Skip to main content
Log in

Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A

Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show that Coulomb branches of quiver gauge theories of affine type A are Cherkis bow varieties, which have been introduced as ADHM type description of moduli space of instantons on the Taub–NUT space equivariant under a cyclic group action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Braverman, A., Dobrovolska, G., Finkelberg, M.: Gaiotto–Witten superpotential and Whittaker D-modules on monopoles, ArXiv e-prints (2014). arXiv:1406.6671 [math.AG]

  2. Bullimore, M., Dimofte, T., Gaiotto, D.: The Coulomb Branch of 3d \({\cal{N}} =4\) Theories, ArXiv e-prints (2015). arXiv:1503.04817 [hep-th]

  3. Braverman, A., Finkelberg, M.: Pursuing the double affine Grassmannian I: transversal slices via instantons on \({A}_k\)-singularities. Duke Math. J. 152(2), 175–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braverman, A., Finkelberg, M.: Pursuing the double affine Grassmannian III: Convolution with affine zastava. Mosc. Math. J. 13(2), 233–265, 363 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of \(3\)-dimensional \({\cal{N}}=4\) gauge theories, II, ArXiv e-prints (2016). arXiv:1601.03586 [math.RT]

  6. Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of \(3d\) \({\cal{N}}=4\) quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes), ArXiv e-prints (2016). arXiv:1604.03625 [math.RT]

  7. Braverman, A., Finkelberg, M., Nakajima, H.: Instanton moduli spaces and \({\cal{W}}\)-algebras, Astérisque (2016), no. 385, vii+128. arXiv:1406.2381 [math.QA]

  8. Bielawski, R.: Hyper-Kähler structures and group actions. J. London Math. Soc. (2) 55(2), 400–414 (1997)

    Article  MathSciNet  Google Scholar 

  9. Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellamy, G., Schedler, T.: Symplectic resolutions of Quiver varieties and character varieties, ArXiv e-prints (2016). arXiv:1602.00164 [math.AG]

  11. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Compos. Math. 126(3), 257–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crawley-Boevey, W.: Normality of Marsden–Weinstein reductions for representations of quivers. Math. Ann. 325(1), 55–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crawley-Boevey, W.: On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero. Duke Math. J. 118(2), 339–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cherkis, S.A.: Moduli spaces of instantons on the Taub-NUT space. Comm. Math. Phys. 290(2), 719–736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cherkis, S.A.: Instantons on the Taub-NUT space. Adv. Theor. Math. Phys. 14(2), 609–641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cherkis, S.A.: Instantons on gravitons. Commun. Math. Phys. 306(2), 449–483 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cherkis, S.A., Kapustin, A.: Singular monopoles and supersymmetric gauge theories in three dimensions. Nucl. Phys. B 525(1–2), 215–234 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cherkis, S. A., O’Hara, C., Sämann, C.: Super Yang–Mills theory with impurity walls and instanton moduli spaces. Phys. Rev. D 83 (2011), no. 12, 126009. arXiv:1103.0042 [hep-th]

  19. de Boer, J., Hori, K., Ooguri, H., Oz, Y., Yin, Z.: Mirror symmetry in three-dimensional gauge theories, \({{\rm SL}}(2,{ Z})\) and D-brane moduli spaces. Nucl. Phys. B 493(1–2), 148–176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Boer, J., Hori, K., Ooguri, H., Oz, Y.: Mirror symmetry in three-dimensional gauge theories, quivers and D-branes. Nucl. Phys. B 493(1–2), 101–147 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Donaldson, S.K.: Nahm’s equations and the classification of monopoles. Commun. Math. Phys. 96(3), 387–407 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Finkelberg, M., Rybnikov, L.: Quantization of Drinfeld zastava in type A. J. Eur. Math. Soc. 16(2), 235–271 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hikita, T.: An algebro-geometric realization of the cohomology ring of hilbert scheme of points in the affine plane. Int. Math. Res. Not. IMRN 8, 2538–2561 (2017), arXiv:1501.02430 [math.AG]

  24. Hurtubise, J.: The classification of monopoles for the classical groups. Commun. Math. Phys. 120(4), 613–641 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492(1–2), 152–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. King, A.: Instantons and holomorphic bundles on the blown up plane, Ph.D. thesis, Oxford, (1989)

  27. King, A.D.: Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kraft, H., Procesi, C.: Closures of conjugacy classes of matrices are normal. Invent. Math. 53(3), 227–247 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kronheimer, P. B.: A hyperkähler structure on the cotangent bundle of a complex manifold. http://www.math.harvard.edu/~kronheim, (1988)

  30. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differential Geom. 29(3), 665–683 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kronheimer, P.B.: Instantons and the geometry of the nilpotent variety. J. Differential Geom. 32(2), 473–490 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Le Bruyn, L., Procesi, C.: Semisimple representations of quivers. Trans. Am. Math. Soc. 317(2), 585–598 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Losev, I.V.: Symplectic slices for actions of reductive groups. Mat. Sb. 197(2), 75–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maffei, A.: Quiver varieties of type A. Comment. Math. Helv. 80(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nakajima, H.: Homology of moduli spaces of instantons on ALE spaces. I. J. Differential Geom. 40(1), 105–127 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, vol. 18. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  39. Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nakajima, H.: Quiver varieties and branching. Sigma Symmetry Integr. Geom. Methods Appl. 3, 37 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Nakajima, H.: Questions on provisional Coulomb branches of \(3\)-dimensional \({\cal{N}}=4\) gauge theories, Sūrikaisekikenkyūsho Kōkyūroku (2015), no. 1977, 57–76. arXiv:1510.03908 [math-ph]

  42. Nakajima, H.: Towards a mathematical definition of Coulomb branches of \(3\)-dimensional \({\cal{N}}=4\) gauge theories, I, Adv. Theor. Math. Phys. 20 (2016), no. 3, 595–669. arXiv:1503.03676 [math-ph]

  43. Nakajima, H., Yoshioka, K.: Perverse coherent sheaves on blow-up. I. A quiver description, exploring new structures and natural constructions in mathematical physics. Adv. Stud. Pure Math. Math. Soc. Jpn, Tokyo 61, 349–386 (2011)

    MATH  Google Scholar 

  44. Oblomkov, A.: Double affine Hecke algebras and Calogero–Moser spaces. Represent. Theory 8, 243–266 (2004). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takayama, Y.: Bow varieties and ALF spaces. Math. Proc. Cambridge Philos. Soc. 158(1), 37–82 (2015)

    Article  MathSciNet  Google Scholar 

  46. Takayama, Y.: Nahm’s equations, quiver varieties and parabolic sheaves. Publ. Res. Inst. Math. Sci. 52(1), 1–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiraku Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, H., Takayama, Y. Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A . Sel. Math. New Ser. 23, 2553–2633 (2017). https://doi.org/10.1007/s00029-017-0341-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0341-7

Mathematics Subject Classification

Navigation