Skip to main content
Log in

Time-resolved ICP-MS Measurement: a New Method for Elemental and Multiparametric Analysis of Single Cells

Analytical Sciences Aims and scope Submit manuscript

Abstract

Time-resolved inductively coupled plasma mass spectrometry (ICP-MS) has attracted much attention for elemental and multiparametric analysis of single cells, instead of a classical bulk analysis of large amount of cells after a dissolution. In the time-resolved measurement, cells are directly introduced into the plasma via nebulizing or micro drop dispensing, and then ion plumes corresponding to single cells are individually detected with a high time resolution. The sensitivity and cell throughput in the measurement strongly depend on the time resolution. A high cell introduction efficiency into the plasma supports for a reduction of cell consumption. Biomolecules can also be measured through the attachment of elemental tags, and then the amount distribution of elements and biomolecules in single cells can be evaluated, while providing information concerning cell-to-cell variations. By applying ICP time-of-flight mass spectrometry (ICP-TOFMS), multiparametric analysis of elements and biomolecules can be achieved similar to that by a flow cytometer. This article highlights the technical aspects of the time-resolved ICP-MS measurement technique for elemental and multiparametric analysis of single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

7 References

  1. J. Szpunar, Analyst, 2005, 130, 442.

    Article  CAS  PubMed  Google Scholar 

  2. R. Lobinski, D. Schaumloffel, and J. Szpunar, Mass Spectrom. Rev., 2006, 25, 255.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Ogra, Anal. Sci., 2009, 25, 1189.

    Article  CAS  PubMed  Google Scholar 

  4. A. Prange and D. Proefrock, J. Anal. At. Spectrom., 2008, 23, 432.

    Article  CAS  Google Scholar 

  5. J. Bettmer, M. Bayon, J. Encinar, M. Sanchez, M. de la Campa, and A. Sanz-Medel, J. Proteomics, 2009, 72, 989.

    Article  CAS  PubMed  Google Scholar 

  6. M. Wang, W. Feng, Y. Zhao, and Z. Chai, Mass Spectrom. Rev., 2010, 29, 326.

    Article  PubMed  Google Scholar 

  7. C. Engelhard, Anal. Bioanal. Chem., 2011, 399, 213.

    Article  CAS  PubMed  Google Scholar 

  8. D. Profrock and A. Prange, Appl. Spectrosc., 2012, 66, 843.

    Article  PubMed  Google Scholar 

  9. C. Giesen, L. Waentig, U. Panne, and N. Jakubowski, Spectrochim. Acta, Part B, 2012, 76, 27.

    Article  CAS  Google Scholar 

  10. A. Sanz-Medel, M. Montes-Bayon, J. Bettmer, M. Fernandez-Sanchez, and J. Encinar, TrAC, Trends Anal. Chem., 2012, 40, 52.

    Article  CAS  Google Scholar 

  11. R. Houk, V. Fassel, G. Flesch, H. Svec, A. Gray, and C. Taylor, Anal. Chem., 1980, 52, 2283.

    Article  CAS  Google Scholar 

  12. J. Szpunar, Anal. Bioanal. Chem., 2004, 378, 54.

    Article  CAS  PubMed  Google Scholar 

  13. H. Haraguchi, J. Anal. At. Spectrom., 2004, 19, 5.

    Article  CAS  Google Scholar 

  14. F. Li, D. W. Armstrong, and R. S. Houk, Anal. Chem., 2005, 77, 1407.

    Article  CAS  PubMed  Google Scholar 

  15. K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114.

    Article  CAS  Google Scholar 

  16. C. N. Tsang, K. S. Ho, H. Sun, and W. T. Chang, J. Am. Chem. Soc., 2011, 133, 7355.

    Article  CAS  PubMed  Google Scholar 

  17. A. Groombridge, S. Miyashita, S. Fujii, K. Nagasawa, T. Okahashi, M. Ohata, T. Umemura, A. Takatsu, K. Inagaki, and K. Chiba, Anal. Sci., 2013, 29, 597.

    Article  CAS  PubMed  Google Scholar 

  18. K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann, and N. Jakubowski, J. Anal. At. Spectrom., 2013, 28, 646.

    Article  CAS  Google Scholar 

  19. S. D. Tanner, D. R. Bandura, O. Ornatsky, V. I. Baranov, M. Nitz, and M. A. Winnik, Pure Appl. Chem., 2008, 80, 2627.

    Article  CAS  Google Scholar 

  20. D. Bandura, V. Baranov, O. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. Dick, and S. Tanner, Anal. Chem., 2009, 81, 6813.

    Article  CAS  PubMed  Google Scholar 

  21. O. Ornatsky, D. Bandura, V. Baranov, M. Nitz, M. A. Winnik, and S. Tanner, J. Immunol. Methods, 2010, 361, 1.

    Article  CAS  PubMed  Google Scholar 

  22. S. Bendall, E. Simonds, P. Qiu, E. Amir, P. Krutzik, R. Finck, R. Bruggner, R. Melamed, A. Trejo, O. Ornatsky, R. Balderas, S. Plevritis, K. Sachs, D. Pe’er, S. Tanner, and G. Nolan, Science, 2011, 332, 687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. C. Bendall, G. P. Nolan, M. Roederer, and P. K. Chattopadhyay, Trends Immunol., 2012, 33, 323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Trouillon, M. Passarelli, J. Wang, M. Kurczy, and A. Ewing, Anal. Chem., 2013, 85, 522.

    Article  CAS  PubMed  Google Scholar 

  25. S. Date, H. Mizuno, N. Tsuyama, T. Harada, and T. Masujima, Anal. Sci., 2012, s, 201.

    Article  Google Scholar 

  26. Y. Lin, R. Trouillon, G. Safina, and A. Ewing, Anal. Chem., 2011, 83, 4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Masujima, Anal. Sci., 2009, 25, 953.

    Article  CAS  PubMed  Google Scholar 

  28. E. Turner, D. Cohen, H. Pugsley, D. Gomez, C. Whitmore, C. Zhu, and N. Dovichi, Anal. Bioanal. Chem., 2008, 390, 223.

    Article  CAS  PubMed  Google Scholar 

  29. J. V. Sweedler and E. A. Arriaga, Anal. Bioanal. Chem., 2007, 387, 1.

    Article  CAS  Google Scholar 

  30. G. Cerchiaro, T. M. Manieri, and F. R. Bertuchi, Metallomics, 2013, 5, 1336.

    Article  CAS  PubMed  Google Scholar 

  31. H. Kawaguchi, N. Fukasawa, and A. Mizuike, Spectrochim. Acta, Part B, 1986, 41, 1277.

    Article  Google Scholar 

  32. U. K. Bochert and W. Dannecker, J. Aerosol Sci., 1989, 20, 1525.

    Article  CAS  Google Scholar 

  33. T. Nomizu, S. Kaneco, T. Tanaka, T. Yamamoto, and H. Kawaguchi, Anal. Sci., 1993, 9, 843.

    Article  CAS  Google Scholar 

  34. T. Myojo, M. Takaya, and M. Ono-Ogasawara, Aerosol Sci. Technol., 2002, 36, 76.

    Article  CAS  Google Scholar 

  35. S. E. Hobbs and J. W. Olesik, Anal. Chem., 1992, 64, 274.

    Article  CAS  PubMed  Google Scholar 

  36. J. W. Olesik, Appl. Spectrosc., 1997, 51, 158A.

    Article  CAS  Google Scholar 

  37. L. A. Allen, J. J. Leach, and R. S. Houk, Anal. Chem., 1997, 69, 2384.

    Article  CAS  PubMed  Google Scholar 

  38. T. Nomizu, S. Kaneco, T. Tanaka, D. Ito, H. Kawaguchi, and B. T. Vallee, Anal. Chem., 1994, 66, 3000.

    Article  CAS  Google Scholar 

  39. http://www.dvssciences.com/index.php.

  40. J. W. Olesick and P. J. Gray, J. Anal. At. Spectrom., 2012, 27, 1143.

    Article  Google Scholar 

  41. S. D. Tanner, O. Ornatsky, D. R. Bandura, and V. I. Baranov, Spectrochim. Acta, Part B, 2007, 62, 188.

    Article  Google Scholar 

  42. R. Thomas, “Practical Guide to ICP-MS”, 2013, 3rd ed., CRC Press, US.

    Book  Google Scholar 

  43. J. L. Todolí and J. M. Mermet, “Liquid Sample Introduction in ICP Spectrometry: A Practical Guide”, 2008, Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  44. K. Inagaki, S. Fujii, A. Takatsu, and K. Chiba, J. Anal. At. Spectrom., 2011, 26, 623.

    Article  CAS  Google Scholar 

  45. Y. Takasaki, K. Inagaki, A. Sabarudin, S. Fujii, D. Iwahata, A. Takatsu, K. Chiba, and T. Umemura, Talanta, 2011, 87, 24.

    Article  CAS  PubMed  Google Scholar 

  46. A. S. Groombridge, K. Inagaki, S. Fujii, K. Nagasawa, T. Okahashi, A. Takatsu, and K. Chiba, J. Anal. At. Spectrom., 2012, 27, 1787.

    Article  CAS  Google Scholar 

  47. R. Finck, E. F. Simonds, A. Jager, S. Krishnaswamy, K. Sachs, W. Fantl. D. Pe’er, G. P. Nolan, and S. C. Bendall, Cytometry, Part A, 2013, 83A, 483.

    Article  CAS  Google Scholar 

  48. J. Tuoriniemi, G. Cornelis, and M. Hassellöv, Anal. Chem., 2012, 84, 3965.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Inagaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyashita, SI., Groombridge, A.S., Fujii, SI. et al. Time-resolved ICP-MS Measurement: a New Method for Elemental and Multiparametric Analysis of Single Cells. ANAL. SCI. 30, 219–224 (2014). https://doi.org/10.2116/analsci.30.219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.219

Keywords

Navigation