Skip to main content

Advertisement

Log in

Quasi-elastic scattering of the proton drip line nucleus 17F on 12C at 60 MeV

The European Physical Journal A Aims and scope Submit manuscript

Abstract

The quasi-elastic scattering angular distribution of the proton drip line nucleus 17F on a 12C target was measured at 60 MeV. The experimental data have been compared with the theoretical analysis based onto optical model and continuum discretized coupled channels (CDCC). The couplings between breakup and elastic scattering channels, and between inelastic and elastic scattering channels resulted very weak. In order to explore the breakup effects the total reaction cross-section was deduced from the angular distribution of the quasi-elastic scattering data, and then compared with the existing data for the other weakly and tightly bound nuclei on 12C target using a universal function. From this comparison, we concluded that the breakup effect is not important for weakly bound projectiles on the light target as obtained also with the CDCC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P.G. Hansen, A.S. Jensen, B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995).

    Article  ADS  Google Scholar 

  2. R. Morlock et al., Phys. Rev. Lett. 79, 3837 (1997).

    Article  ADS  Google Scholar 

  3. M.J. Borge et al., Phys. Lett. B 217, 25 (1993).

    ADS  Google Scholar 

  4. C. Iliadis et al., Astrophys. J. Suppl. Ser. 142, 105 (2002).

    Article  ADS  Google Scholar 

  5. K.E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998).

    Article  ADS  Google Scholar 

  6. J.F. Liang et al., Phys. Lett. B 491, 23 (2000).

    Article  ADS  Google Scholar 

  7. A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001).

    Article  ADS  Google Scholar 

  8. H. Kitagawa, N. Tajima, H. Sagawa, Z. Phys. A 358, 381 (1997).

    Article  ADS  Google Scholar 

  9. J.F. Liang et al., Phys. Rev. C 65, 051603 (2002).

    Article  ADS  Google Scholar 

  10. J.F. Liang et al., Phys. Rev. C 67, 044603 (2003).

    Article  ADS  Google Scholar 

  11. M. Romoli et al., Phys. Rev. C 69, 064614 (2004).

    Article  ADS  Google Scholar 

  12. J.C. Blackmon et al., Phys. Rev. C 72, 034606 (2005).

    Article  ADS  Google Scholar 

  13. M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010).

    Article  ADS  Google Scholar 

  14. E.F. Aguilera et al., Phys. Rev. Lett. 84, 5058 (2000).

    Article  ADS  Google Scholar 

  15. J.J. Kolata et al., Phys. Rev. C 57, 6(R) (1998).

    Article  ADS  Google Scholar 

  16. M. Trotta et al., Phys. Rev. Lett. 84, 2342 (2000).

    Article  ADS  Google Scholar 

  17. K. Kalita et al., Phys. Rev. C 73, 024609 (2006).

    Article  ADS  Google Scholar 

  18. A. Barioni et al., Phys. Rev. C 84, 014603 (2011).

    Article  ADS  Google Scholar 

  19. P.R.S. Gomes, J. Lubian, I. Padron, R.M. Anjos, Phys. Rev. C 71, 017601 (2005).

    Article  ADS  Google Scholar 

  20. J.A. Tostevin, F.M. Nunes, I.J. Thompson, Phys. Rev. C 63, 024617 (2001).

    Article  ADS  Google Scholar 

  21. J.S. Al-Khalili, J.A. Tostevin, in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, edited by E.R. Pike, Pierre C. Sabatier (Academic, London, 2001) Chapt. 3.1.3.

  22. A. Diaz-Torres et al., Phys. Rev. C 68, 044607 (2003).

    Article  ADS  Google Scholar 

  23. C. Beck et al., Phys. Rev. C 75, 054605 (2007).

    Article  ADS  Google Scholar 

  24. Y. Yanagisawa et al., Nucl. Instrum. Methods A 539, 74 (2005).

    Article  ADS  Google Scholar 

  25. M.P. Nicoli, F. Haas, R.M. Freeman, S. Szilner, Z. Basrak, A. Morsad, G.R. Satchler, M.E. Brandan, Phys. Rev. C 61, 034609 (2000).

    Article  ADS  Google Scholar 

  26. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988).

    Article  ADS  Google Scholar 

  27. S. Szilner, M.P. Nicoli, Z. Basrak, R.M. Freeman, F. Haas, A. Morsad, M.E. Brandan, G.R. Satchler, Phys. Rev. C 64, 064614 (2001).

    Article  ADS  Google Scholar 

  28. S. Raman, C.W. Nestor jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  29. C.A. Pearson et al., Nucl. Phys. A 191, 1 (1972).

    Article  ADS  Google Scholar 

  30. L. Canto et al., Nucl. Phys. A 821, 51 (2009).

    Article  ADS  Google Scholar 

  31. J. Shorto et al., Phys. Lett. B 678, 77 (2009).

    Article  ADS  Google Scholar 

  32. J.C. Zamora et al., Phys. Rev. C 84, 034611 (2011).

    Article  ADS  Google Scholar 

  33. J.J. Kolata, E.F. Aguilera, Phys. Rev. C 79, 027603 (2009).

    Article  ADS  Google Scholar 

  34. E.F. Aguilera, I. Martel, A.M. Sánchez-Benź, L. Acosta, Phys. Rev. C 83, 021601(R) (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Q. Zhang.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G.L., Zhang, C.L., Zhang, H.Q. et al. Quasi-elastic scattering of the proton drip line nucleus 17F on 12C at 60 MeV. Eur. Phys. J. A 48, 65 (2012). https://doi.org/10.1140/epja/i2012-12065-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12065-x

Keywords

Navigation