Skip to main content

Advertisement

Log in

Expression of Calcium-Binding Proteins, Calbindin D28k and Calretinin, in the Frog Taste Receptor Structures

Neurophysiology Aims and scope

Considering that information on the expression of calcium-binding proteins (CaBPs) in different cells of the taste receptors is rather limited, we investigated the distribution of such proteins, calbindin D28k (CB) and calretinin (CR), in the taste disc (TD) of the frog Lithobates catesbeianus. Western blot analysis revealed that CB and CR are expressed in cells of the fungiform papillae. CB-immunoreactive (ir) and CR-ir cell somata were located in the middle layer of the TD. Most CB-ir and CR-ir cells possessed one rod-shaped apical process and one basal process; in some cells there were several extended basal processes. Apical processes of CR-ir cells were thinner than those of CB-ir units, and CR-ir nerve fibers were ramified in the lamina propria directly below the TD. Most CR-ir fiber branches surrounded the TD; however, some penetrated this region, with both types of branches approaching the surface. CB and CR immunoreactivities did not co-occur in TD cells. In the TDs examined, the number of CB-ir cells was significantly greater than that of CR-ir units. Our observations suggest that CB-ir and CR-ir cells in the frog TD correspond to type-II and type-III cells, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Medler, R. F. Margolskee, and S. C. Kinnamon, “Electrophysiological characterization of voltage-gated currents in defined taste cell type of mice,” J. Neurosci., 23, No. 7, 2608-2617 (2003).

    CAS  PubMed  Google Scholar 

  2. T. A. Richter, A. Caicedo, and S. D. Roper, “Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells,” J. Physiol., 547, Pt. 2, 475-483 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. R. Clapp, K. F. Medler, S. Damak, et al., “Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25,” BMC Biol., 4, 7 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. B. Schwaller, “Cytosolic Ca2+ buffers,” Cold Spring Harb. Perspect. Biol., 2, No. 11, a004051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. B. Schwaller, “Calretinin: from a “simple” Ca2+ buffer to a multifunctional protein implicated in many biological processes,” Front. Neuroanat., 8, 3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. H. Schmidt, “Three functional facets of calbindin D-28k,” Front. Mol. Neurosci., 5, 25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. R. Rebello, A. Aktas, and K. F. Medler, “Expression of calcium binding proteins in mouse type II taste cells”, J. Histochem. Cytochem., 59, No. 5, 530-539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Ohkubo, H. Yokosuka, M. Kumakura, and S. Yoshie, “Existence of subtypes of gustducin-immunoreactive cells in the vallate taste bud of guinea pigs,” Arch. Histol. Cytol., 70, No. 5, 291-296 (2007).

    Article  PubMed  Google Scholar 

  9. F. Osculati and A. Sbarbati, “The frog taste disc: a prototype of the vertebrate gustatory organ,” Prog. Neurobiol., 46, No. 4, 351-399 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. H. Kuramoto, “An immunohistochemical study of cellular and nervous elements in the taste organ of the bullfrog, Rana catesteiana,” Arch. Histol. Cytol., 51, No. 2, 205-221 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. H. H. Kershbaum and A. Hermann, “Calcium-binding proteins in chemoreceptors of Xenopus laevis,” Tissue Cell., 24, No. 5, 719-724 (1992).

    Article  Google Scholar 

  12. L. A. Barlow, C. B. Chien, and R. G. Northcutt, “Embryonic taste buds develop in the absence of innervation,” Development, 122, No. 4, 1103-1111 (1996).

    CAS  PubMed  Google Scholar 

  13. S. Yoshie, M. Kumakura, and K. Toyoshima, “Villin is a possible marker of receptor cells in frog taste organs,” Histochem. Cell Biol., 119, No. 6, 447-450 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. S. Tsuji, M. Okamoto, K. Yamada, et al., “B cell adaptor containing src homology 2 domain (BASH) links B cell receptor signaling to the activation of hematopoietic progenitor kinase 1,” J. Exp. Med., 194, No. 4, 529-539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Imamura, T. Katahira, and D. Kitamura, “Identification and characterization of a novel BASH N terminus-associated protein, BNAS2,” J. Biol. Chem., 279, No. 25, 26425-26432 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. J. H. Y. Li and B. Lindemann, “Multi-photon microscopy of cell types in the viable taste disk of the frog,” Cell Tissue Res., 313, No. 1, 11-27 (2003).

    Article  PubMed  Google Scholar 

  17. H. Ando, M. Tomida, K. Inoue, and N. Asanuma, “Dopamine beta-hydroxylase-like immunoreactive cells in the frog taste disc,” Chem. Senses., 32, No. 9, 825-832 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. H. Takeuchi, T. Tsunenari, T. Kurahashi, and A. Kaneko, “Physiology of morphologically identified cells of the bullfrog fungiform papilla,” NeuroReport, 12, No. 13, 2957-2962 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. K. Hacker, A. Laskowski, L. Feng, et al., “Evidence for two populations of bitter responsive taste cells in mice,” J. Neurophysiol., 99, No. 3, 1503-1514 (2008).

    Article  PubMed  Google Scholar 

  20. R. A. DeFazio, G. Dvoryanchikov, Y. Maruyama, et al., “Separate populations of receptor cells and presynaptic cells in mouse taste buds,” J. Neurosci., 26, No. 15, 3971-3980 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Morona, N. Moreno, J. M. López, and A. González, “Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis,” J. Comp. Neurol., 494, No. 5, 763-783 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. H. Schmidt, B. Schwaller, and J. Eilers, “Calbindin D28k targets myo-inositol monophosphates in spines and dendrites of cerebellar Purkinje neurons,” Proc. Natl. Acad. Scs. USA, 102, No. 16, 5850-5855 (2005).

    Article  CAS  Google Scholar 

  23. R. F. Margolskee, “Molecular mechamisms of bitter and sweet taste transduction,” J. Biol. Chem., 277, No. 1, 1-4 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. T. Suwabe and Y. Kitada, “Voltage-gated inward currents of morphologically identified cells of the frog taste disc,” Chem. Senses, 29, 61-73 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Okada, R. Fujiyama, T. Miyamoto, and T. Sato, “Inositol 1,4,5-trisphosphate activates non-selective cation conductance via intracellular Ca2+ increase in isolated frog taste cells,” Eur. J. Neurosci., 10, No. 4, 1376-1382 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, H., Imamura, Y., Tadokoro, O. et al. Expression of Calcium-Binding Proteins, Calbindin D28k and Calretinin, in the Frog Taste Receptor Structures. Neurophysiology 49, 254–260 (2017). https://doi.org/10.1007/s11062-017-9679-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9679-x

Keywords

Navigation