Skip to main content

Advertisement

Log in

Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses

Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Emerging evidence has unveiled a critical role for immunological parameters in predicting tumor prognosis and clinical responses to anticancer therapeutics. On the other hand, responsiveness to anticancer drugs greatly modifies the repertoires, phenotypes, and immunogenicity of tumor-infiltrating immune cells, serving as a critical factor to regulate tumorigenic activities and the emergence of therapy-resistant phenotypes. Tumor-associated immune functions are influenced by distinct or overlapping sets of therapeutic modalities, such as cytotoxic chemotherapy, radiotherapy, or molecular-targeted therapy, and various anticancer modalities have unique properties to influence the mode of cross-talk between tumor cells and immune cells in tumor microenvironments. Thus, it is critical to understand precise molecular machineries whereby each anticancer strategy has a distinct or overlapping role in regulating the dynamism of reciprocal communication between tumor and immune cells in tumor microenvironments. Such an understanding will open new therapeutic opportunities by harnessing the immune system to overcome resistance to conventional anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446, 749–757.

    Article  CAS  PubMed  Google Scholar 

  2. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141, 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13, 714–726.

    Article  CAS  PubMed  Google Scholar 

  5. Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141, 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23, 811–825.

    Article  CAS  PubMed  Google Scholar 

  7. Magee, J. A., Piskounova, E., & Morrison, S. J. (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283–296.

    Article  CAS  PubMed  Google Scholar 

  8. Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, 17, 313–319.

    Article  CAS  PubMed  Google Scholar 

  9. Haber, D. A., Bell, D. W., Sordella, R., Kwak, E. L., Godin-Heymann, N., Sharma, S. V., et al. (2005). Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors. Cold Spring Harbor Symposia on Quantitative Biology, 70, 419–426.

    Article  CAS  PubMed  Google Scholar 

  10. Poulikakos, P. I., & Rosen, N. (2011). Mutant BRAF melanomas—dependence and resistance. Cancer Cell, 19(1), 11–15.

    Article  CAS  PubMed  Google Scholar 

  11. Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280.

    Article  CAS  PubMed  Google Scholar 

  12. Gilbert, L. A., & Hemann, M. T. (2010). DNA damage-mediated induction of a chemoresistant niche. Cell, 143, 355–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pallasch, C. P., Leskov, I., Braun, C. J., Vorholt, D., Drake, A., & Soto-Feliciano, Y. M. (2014). Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell, 156(3), 590–602.

    Article  CAS  PubMed  Google Scholar 

  14. Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15, 68–74.

    Article  CAS  PubMed  Google Scholar 

  15. Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2010). An epigenetic switch involving NF-kB, Lin28, Let-7 MicroRNA, and IL-6 links inflammation to cell transformation. Cell, 139, 693–706.

    Article  Google Scholar 

  16. Gilvennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140, 883–899.

    Article  Google Scholar 

  17. Lake, R. A., & Robinson, B. W. (2005). Immunotherapy and chemotherapy—a practical partnership. Nature Reviews Cancer, 5(5), 397–405.

    Article  CAS  PubMed  Google Scholar 

  18. Zitvogel, L., Galluzzi, L., Smyth, M. J., & Kroemer, G. (2013). Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, 39, 74–88.

    Article  CAS  PubMed  Google Scholar 

  19. Jinushi, M., Yagita, H., Yoshiyama, H., & Tahara, H. (2013). Putting the brakes on anticancer therapies: suppression of innate immune pathways by tumor-associated myeloid cells. Trends in Molecular Medicine, 9, 536–545.

    Article  Google Scholar 

  20. Bruchard, M., Mignot, G., Derangère, V., Chalmin, F., Chevriaux, A., Végran, F., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 19(1), 57–64.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, B., Zhao, J., Li, H., He, K. L., Chen, Y., & Chen, S. H. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65(12), 5009–5014.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., & Xiong, H. (2008). TLR signaling by tumor and immune cells: a double-edged sword. Oncogene, 27(2), 218–224.

    Article  CAS  PubMed  Google Scholar 

  23. Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 4, 11–22.

    Article  CAS  PubMed  Google Scholar 

  24. Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tye, H., Kennedy, C. L., Najdovska, M., McLeod, L., McCormack, W., Hughes, N., et al. (2012). STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell, 22(4), 466–478.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, B., Zhao, J., Shen, S., Li, H., He, K. L., Shen, G. X., et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research, 67(9), 4346–4352.

    Article  CAS  PubMed  Google Scholar 

  27. Szajnik, M., Szczepanski, M. J., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., et al. (2009). TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., et al. (2010). Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. Journal of Clinical Investigation, 120, 1285–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiba, S., Baghdadi, M., Akiba, H., Yoshiyama, H., Kinoshita, I., Dosaka-Akita, H., et al. (2012). Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nature Immunology, 13, 832–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, D., & Lotze, M. T. (2012). Tumor immunity times out: TIM-3 and HMGB1. Nature Immunology, 9, 808–810.

    Article  Google Scholar 

  31. Green, D. R., et al. (2009). Immunogenic and tolerogenic cell death. Nature Reviews Immunology, 9, 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Obeid, M., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 13, 54–61.

    Article  CAS  PubMed  Google Scholar 

  33. Jinushi, M., et al. (2009). Milk fat globule EGF-8 triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. Journal of Experimental Medicine, 206, 1317–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Loges, S., Schmidt, T., Tjwa, M., van Geyte, K., Lievens, D., Lutgens, E., et al. (2010). Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood, 115(11), 2264–2273.

    Article  CAS  PubMed  Google Scholar 

  35. Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadl, A., Walk, S. F., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 461(7261), 282–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chao, M. P., Majeti, R., & Weissman, I. L. (2011). Programmed cell removal: a new obstacle in the road to developing cancer. Nature Reviews Cancer, 12, 58–67.

    PubMed  Google Scholar 

  37. Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., Alizadeh, A. A., Gentles, A. J., Volkmer, J., et al. (2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and counterbalanced by CD47. Science Translational Medicine, 2(63), 63ra94.

    Article  CAS  PubMed  Google Scholar 

  38. Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138(2), 271–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baghdadi, M., Yoneda, A., Yamashina, T., Nagao, H., Komohara, Y., Nagai, S., et al. (2013). TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity, 39, 1070–1081.

    Article  CAS  PubMed  Google Scholar 

  40. Jinushi, M., Chiba, S., Baghdadi, M., Kinoshita, I., Dosaka-Akita, H., Ito, K., et al. (2012). ATM-mediated DNA damage signals mediate immune escape through integrin-αvβ3-dependent mechanisms. Cancer Research, 72(1), 56–65.

    Article  CAS  PubMed  Google Scholar 

  41. Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444, 638–642.

    Article  PubMed  Google Scholar 

  42. Mooi, W. J., & Peeper, D. S. (2006). Oncogene-induced cell senescence—halting on the road to cancer. New England Journal of Medicine, 355, 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  43. Collado, M., Blasco, M. A., & Serrano, M. (2007). Cellular senescence in cancer and aging. Cell, 130, 223–233.

    Article  CAS  PubMed  Google Scholar 

  44. Kuilman, T., & Peeper, D. S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 9(2), 81–94.

    Article  CAS  PubMed  Google Scholar 

  45. Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.

    Article  PubMed  Google Scholar 

  46. Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., & Morton, J. P. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 8, 978–990.

    Article  Google Scholar 

  47. Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133(6), 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  48. Pazolli, E., Alspach, E., Milczarek, A., Prior, J., Piwnica-Worms, D., & Stewart, S. A. (2012). Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Research, 72(9), 225122–225161.

    Article  Google Scholar 

  49. Canino, C., Mori, F., Cambria, A., Diamantini, A., Germoni, S., Alessandrini, G., et al. (2012). SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene, 31(26), 3148–3163.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshimoto, S., Loo, T. M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499, 97–101.

    Article  CAS  PubMed  Google Scholar 

  51. Lujambio, A., Akkari, L., Simon, J., Grace, D., Tschaharganeh, D. F., & Bolden, J. E. (2013). Non-cell-autonomous tumor suppression by p53. Cell, 153, 449–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656–660.

    Article  CAS  PubMed  Google Scholar 

  53. Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J. E., et al. (2012). Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes and Development, 25(20), 2125–2136.

    Article  Google Scholar 

  54. Formenti, S. C., & Demaria, S. (2009). Systemic effects of local radiotherapy. Lancet Oncology, 10(7), 718–726.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Klug, F., Prakash, H., Huber, P. E., Seibel, T., Bender, N., Halama, N., et al. (2013). Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 24(5), 589–602.

    Article  CAS  PubMed  Google Scholar 

  56. Burnette, B. C., Liang, H., Lee, Y., Chlewicki, L., Khodarev, N. N., Weichselbaum, R. R., et al. (2011). The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Research, 71(7), 2488–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, Y., Auh, S. L., Wang, Y., Burnette, B., Wang, Y., Meng, Y., et al. (2009). Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood, 114(3), 589–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706.

    Article  CAS  PubMed  Google Scholar 

  59. Ludgate, C. M. (2012). Optimizing cancer treatments to induce an acute immune response: radiation Abscopal effects, PAMPs, and DAMPs. Clinical Cancer Research, 18, 4522–4525.

    Article  CAS  PubMed  Google Scholar 

  60. Apetoh, L., Ghiringhelli, F., Tesniere, A., Criollo, A., Ortiz, C., Lidereau, R., et al. (2007). The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunology Reviews, 220, 47–59.

    Article  CAS  Google Scholar 

  61. Krysko, D. V., Garg, A. D., Kaczmarek, A., Krysko, O., Agostinis, P., & Vandenabeele, P. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 12, 860–875.

    Article  CAS  PubMed  Google Scholar 

  62. Kozin, S. V., Duda, D. G., Munn, L. L., & Jain, R. K. (2012). Neovascularization after irradiation: what is the source of newly formed vessels in recurring tumors? Journal of the National Cancer Institute, 104, 899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xu, J., Escamilla, J., Mok, S., David, J., Priceman, S., West, B., et al. (2013). CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Research, 73(9), 2782–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharma, S. V., Bell, D. W., Settleman, J., & Haber, D. A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 7(3), 169–181.

    Article  CAS  PubMed  Google Scholar 

  65. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  66. Kobayashi, S., Boggon, T. J., Dayaram, T., Jänne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792.

    Article  CAS  PubMed  Google Scholar 

  67. Bivona, T. G., Hieronymus, H., Parker, J., Chang, K., Taron, M., Rosell, R., et al. (2011). FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature, 47, 523–526.

    Article  Google Scholar 

  68. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  69. Vanneman, M., & Dranoff, G. (2012). Combining immunotherapy and targeted therapies in cancer treatment. Nature Reviews Cancer, 12(4), 237–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao, S. P., Mark, K. G., Leslie, K., Pao, W., Motoi, N., Gerald, W. L., et al. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. Journal of Clinical Investigation, 117, 3846–3856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jinushi, M., Chiba, S., Yoshiyama, H., Masutomi, K., Kinoshita, I., Dosaka-Akita, H., et al. (2011). Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12425–12430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Z., Lee, J. C., Lin, L., Olivas, V., Au, V., LaFramboise, T., et al. (2012). Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genetics, 44(8), 852–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., BRIM-3 Study Group, et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364, 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine, 203, 1651–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang, X., Zhou, J., Giobbie-Hurder, A., Wargo, J., & Hodi, F. S. (2013). The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clinical Cancer Research, 19, 598–609.

    Article  CAS  PubMed  Google Scholar 

  76. Knight, D. A., Ngiow, S. F., Li, M., Parmenter, T., Mok, S., Cass, A., et al. (2013). Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 123, 1371–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frederick, D. T., Piris, A., Cogdill, A. P., Cooper, Z. A., Lezcano, C., Ferrone, C. R., et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical Cancer Research, 19, 1225–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., Global ARCC Trial, et al. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine, 356, 2271–2281.

    Article  CAS  PubMed  Google Scholar 

  79. Pearce, E. L., & Pearce, E. J. (2013). Metabolic pathways in immune cell activation and quiescence. Immunity, 38, 633–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Waickman, A. T., & Powell, J. D. (2012). mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunology Reviews, 49, 43–58.

    Article  Google Scholar 

  81. Amiel, E., Everts, B., Freitas, T. C., King, I. L., Curtis, J. D., Pearce, E. L., et al. (2012). Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. Journal of Immunology, 189, 2151–2158.

    Article  CAS  Google Scholar 

  82. Berezhnoy, A., Castro, I., Levay, A., Malek, T. R., & Gilboa, E. (2014). Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. Journal of Clinical Investigation, 124, 188–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bianchini, G., & Gianni, L. (2014). The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncology, 2, e58–e68.

    Article  Google Scholar 

  84. Taylor, C., Hershman, D., Shah, N., Suciu-Foca, N., Petrylak, D. P., Taub, R., et al. (2007). Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clinical Cancer Research, 13, 5133–5143.

    Article  CAS  PubMed  Google Scholar 

  85. DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kohrt, H. E., Nouri, N., Nowels, K., Johnson, D., Holmes, S., & Lee, P. P. (2005). Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Medicine, 2(9), e284.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., & Anderson, K. C. (2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Reviews Cancer, 8, 585–598.

    Article  Google Scholar 

  88. Richardson, P. G., Sonneveld, P., Schuster, M. W., Irwin, D., Stadtmauer, E. A., Facon, T., Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators, et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. New England Journal of Medicine, 352, 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  89. Palumbo, A., Hajek, R., Delforge, M., Kropff, M., Petrucci, M. T., Catalano, J., MM-015 Investigators, et al. (2012). Continuous lenalidomide treatment for newly diagnosed multiple myeloma. New England Journal of Medicine, 366, 1759–1769.

    Article  CAS  PubMed  Google Scholar 

  90. Chauhan, D., Singh, A. V., Brahmandam, M., Carrasco, R., Bandi, M., Hideshima, T., et al. (2009). Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell, 16, 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jinushi, M., Vanneman, M., Munshi, N. C., Tai, Y. T., Prabhala, R. H., Ritz, J., et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105, 1285–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martiniani, R., Di Loreto, V., Di Sano, C., Lombardo, A., & Liberati, A. M. (2012). Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Advances in Hematology, 2012, 842945.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nature Medicine, 15, 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  94. Yamamoto, R., Nishikori, M., Tashima, M., Sakai, T., Ichinohe, T., Takaori-Kondo, A., et al. (2009). B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Science, 100, 2093–2100.

    Article  CAS  PubMed  Google Scholar 

  95. Ribas, A., & Wolchok, J. D. (2013). Combining cancer immunotherapy and targeted therapy. Current Opinion in Immunology, 25, 291–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahisa Jinushi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinushi, M. Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses. Cancer Metastasis Rev 33, 737–745 (2014). https://doi.org/10.1007/s10555-014-9501-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9501-9

Keywords

Navigation