Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of the TIM gene family on tumor immunity and immunosuppression

Abstract

Tumor immunoevasion is an advanced phase of cancer immunosurveillance in which tumor cells acquire the ability to circumvent host immune systems and exploit protumorigenic inflammation. T-cell immunoglobulin mucin (TIM) gene family members have emerged as critical checkpoint proteins that regulate multiple immune response phases and maintain immune homeostasis. Accumulating evidence demonstrates that tumor cells exploit TIM gene family members to evade immunosurveillance, whereas TIM gene family members facilitate the prevention of inflammation-related tumor progression. Thus, a comprehensive analysis to clarify the relative contributions of TIM gene family members in tumor progression may elucidate immunosurveillance systems in cancer patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Pardoll D . Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003; 21: 807–839.

    Article  CAS  Google Scholar 

  2. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235–271.

    Article  CAS  Google Scholar 

  3. Mellman I, Coukos G, Dranoff G . Cancer immunotherapy comes of age. Nature 2011; 480: 480–489.

    Article  CAS  Google Scholar 

  4. Rosenberg SA . Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 2012; 4: 127ps8.

    Article  Google Scholar 

  5. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 9: 361–371.

    Google Scholar 

  6. Johansson M, Denardo DG, Coussens LM . Polarized immune responses differentially regulate cancer development. Immunol Rev 2008; 222: 145–154.

    Article  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  8. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    Article  CAS  Google Scholar 

  9. Lin WW, Karin M . A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117: 1175–1183.

    Article  CAS  Google Scholar 

  10. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    Article  CAS  Google Scholar 

  11. Dunn GP, Old LJ, Schreiber RD . The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329–360.

    Article  CAS  Google Scholar 

  12. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S . Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181–273.

    Article  CAS  Google Scholar 

  13. Groh V, Wu J, Yee C, Spies T . Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    Article  CAS  Google Scholar 

  14. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253–268.

    Article  CAS  Google Scholar 

  15. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    Article  CAS  Google Scholar 

  16. Postow MA, Harding J, Wolchok JD . Targeting immune checkpoints: releasing the restraints on anti-tumor immunity for patients with melanoma. Cancer J 2013; 18: 153–159.

    Google Scholar 

  17. Zou W . Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  Google Scholar 

  18. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003; 9: 562–567.

    Article  CAS  Google Scholar 

  19. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006; 203: 871–881.

    Article  CAS  Google Scholar 

  20. Coussens LM, Zitvogel L, Palucka AK . Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013; 339: 286–291.

    Article  CAS  Google Scholar 

  21. Luraishy A, Karin M, Grivennilov SI . Tumor promotion via injury- and death-induced inflammation. Immunity 2011; 35: 467–477.

    Article  Google Scholar 

  22. Huang X, Bai X, Cao Y, Wu J, Huang M, Tang D et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 2010; 207: 505–520.

    Article  CAS  Google Scholar 

  23. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010; 7: 708–717.

    Article  CAS  Google Scholar 

  24. Kuchroo VK, Meyers JH, Umetsu DT, DeKruyff RH . TIM family of genes in immunity and tolerance. Adv Immunol 2006; 91: 227–249.

    Article  CAS  Google Scholar 

  25. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH . TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 2010; 235: 172–189.

    Article  CAS  Google Scholar 

  26. Jayaraman P, Sada-Ovalle I, Beladi S, Anderson AC, Dardalhon V, Hotta C et al. Tim3 binding to galectin-9 stimulates antimicrobial immunity. J Exp Med 2010; 207: 2343–2354.

    Article  CAS  Google Scholar 

  27. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13: 832–842.

    Article  CAS  Google Scholar 

  28. Mattei F, Schiavoni G . TIM-3 as a molecular switch for tumor escape from innate immunity. Front Immunol 2013; 9: 418.

    Google Scholar 

  29. Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu MD et al. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J Clin Invest 2008; 118: 735–741.

    Article  CAS  Google Scholar 

  30. de Souza AJ, Oriss TB, O'Malley KJ, Ray A, Kane LP . T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci USA 2005; 102: 17113–17118.

    Article  CAS  Google Scholar 

  31. Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol 2005; 6: 447–454.

    Article  CAS  Google Scholar 

  32. Encinas JA, Janssen EM, Weiner DB, Calarota SA, Nieto D, Moll T et al. Anti-T-cell Ig and mucin domain-containing protein 1 antibody decreases TH2 airway inflammation in a mouse model of asthma. J Allergy Clin Immunol 2005; 116: 1343–1449.

    Article  CAS  Google Scholar 

  33. Xiao S, Zhu B, Jin H, Zhu C, Umetsu DT, DeKruyff RH et al. Tim-1 stimulation of dendritic cells regulates the balance between effector and regulatory T cells. Eur J Immunol 2011; 41: 1539–1549.

    Article  CAS  Google Scholar 

  34. Kobayashi N, Karisola P, Peña-Cruz V, Dorfman DM, Jinushi M, Umetsu SE et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 2007; 27: 927–840.

    Article  CAS  Google Scholar 

  35. Balasubramanian S, Kota SK, Kuchroo VK, Humphreys BD, Strom TB . TIM family proteins promote the lysosomal degradation of the nuclear receptor NUR77. Sci Signal 2012; 5: ra90.

    Article  Google Scholar 

  36. Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes. Nat Immunol 2011; 12: 778–785.

    Article  CAS  Google Scholar 

  37. Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 2012; 110: 416–427.

    Article  CAS  Google Scholar 

  38. Chakravarti S, Sabatos CA, Xiao S, Illes Z, Cha EK, Sobel RA et al. Tim-2 regulates T helper type 2 responses and autoimmunity. J Exp Med 2005; 202: 437–444.

    Article  CAS  Google Scholar 

  39. Knickelbein JE, de Souza AJ, Tosti R, Narayan P, Kane LP . Cutting edge: inhibition of T cell activation by TIM-2. J Immunol 2006; 177: 4966–4970.

    Article  CAS  Google Scholar 

  40. Kumanogoh A, Marukawa S, Suzuki K, Takegahara N, Watanabe C, Ch'ng E et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 2002; 419: 629–633.

    Article  CAS  Google Scholar 

  41. Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE et al. Stability and function of regulatory T cells is maintained by a neuropilin-1–semaphorin-4a axis. Nature 2013; 501: 252–256.

    Article  CAS  Google Scholar 

  42. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  Google Scholar 

  43. Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG et al. CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 2005; 65: 3998–4004.

    Article  CAS  Google Scholar 

  44. de Visser KE, Korets LV, Coussens LM . De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7: 411–243.

    Article  CAS  Google Scholar 

  45. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002; 415: 536–541.

    Article  CAS  Google Scholar 

  46. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6: 1245–1252.

    Article  CAS  Google Scholar 

  47. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 2012; 18: 1394–1400.

    Article  CAS  Google Scholar 

  48. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 2008; 205: 2763–2779.

    Article  CAS  Google Scholar 

  49. Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol 2009; 83: 9122–9130.

    Article  CAS  Google Scholar 

  50. Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012; 56: 1342–1351.

    Article  CAS  Google Scholar 

  51. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 2011; 117: 4501–4510.

    Article  CAS  Google Scholar 

  52. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207: 2175–2186.

    Article  CAS  Google Scholar 

  53. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE 2012; 7: e30676.

    Article  CAS  Google Scholar 

  54. Jinushi M, Yagita H, Yoshiyama H, Tahara H . Putting the brakes on anticancer therapies: suppression of innate immune pathways by tumor-associated myeloid cells. Trends Mol Med 2013; 19: 536–545.

    Article  CAS  Google Scholar 

  55. Ndhlovu LC, Lopez-Vergès S, Barbour JD, Jones RB, Jha AR, Long BR et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 2012; 119: 3734–3743.

    Article  CAS  Google Scholar 

  56. Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    Article  CAS  Google Scholar 

  57. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S . Identification of Tim4 as a phosphatidylserine receptor. Nature 2007; 450: 435–439.

    Article  CAS  Google Scholar 

  58. Wong K, Valdez PA, Tan C, Yeh S, Hongo J, Ouyang W . Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA 2010; 107: 8712–8717.

    Article  CAS  Google Scholar 

  59. Rodriguez-Manzanet R, Sanjuan MA, Wu HY, Quintana FJ, Xiao S, Anderson AC et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 2010; 107: 8706–8711.

    Article  CAS  Google Scholar 

  60. Albacker LA, Karisola P, Chang YJ, Umetsu SE, Zhou M, Akbari O et al. TIM-4, a receptor for phosphatidylserine, controls adaptive immunity by regulating the removal of antigen-specific T cells. J Immunol 2010; 185: 6839–6849.

    Article  CAS  Google Scholar 

  61. Jinushi M, Sato M, Kanamoto A, Itoh A, Nagai S, Koyasu S et al. Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. J Exp Med 2009; 206: 1317–1326.

    Article  CAS  Google Scholar 

  62. Lemke G, Rothlin CV . Immunobiology of the TAM receptors. Nat Rev Immunol 2008; 8: 327–336.

    Article  CAS  Google Scholar 

  63. Baghdadi M, Nagao H, Yoshiyama H, Akiba H, Yagita H, Dosaka-Akita H et al. Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol Immunother 2013; 62: 629–637.

    Article  CAS  Google Scholar 

  64. Gregory CD, Pound JD . Cell death in the neighborhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J Pathol 2011; 223: 177–194.

    Article  CAS  Google Scholar 

  65. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC . Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207: 2187–2194.

    Article  CAS  Google Scholar 

  66. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ . Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res 2011; 71: 3540–3551.

    Article  CAS  Google Scholar 

  67. Sun HW, Wu C, Tan HY, Wang QS . A new development of FG–CC′ siRNA blocking interaction of Tm-1 and Tim-4 can enhance DC vaccine against gastric cancer. Hepatogastroenterology 2012; 59: 2677–2682.

    CAS  PubMed  Google Scholar 

  68. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T . Expression of tumour-specific antigens underlies cancer immunoediting. Nature 2012; 482: 405–409.

    Article  CAS  Google Scholar 

  69. DuPage M, Cheung AF, Mazumdar C, Winslow MM, Bronson R, Schmidt LM et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 2011; 19: 72–85.

    Article  CAS  Google Scholar 

  70. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  Google Scholar 

  71. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a Grant-in-Aid for Scientific Research and Scientific Research for Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Health, Labor and Welfare (MJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahisa Jinushi.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baghdadi, M., Jinushi, M. The impact of the TIM gene family on tumor immunity and immunosuppression. Cell Mol Immunol 11, 41–48 (2014). https://doi.org/10.1038/cmi.2013.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.57

Keywords

This article is cited by

Search

Quick links