Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1

Abstract

The mechanisms by which tumor microenvironments modulate nucleic acid–mediated innate immunity remain unknown. Here we identify the receptor TIM-3 as key in circumventing the stimulatory effects of nucleic acids in tumor immunity. Tumor-associated dendritic cells (DCs) in mouse tumors and patients with cancer had high expression of TIM-3. DC-derived TIM-3 suppressed innate immune responses through the recognition of nucleic acids by Toll-like receptors and cytosolic sensors via a galectin-9-independent mechanism. In contrast, TIM-3 interacted with the alarmin HMGB1 to interfere with the recruitment of nucleic acids into DC endosomes and attenuated the therapeutic efficacy of DNA vaccination and chemotherapy by diminishing the immunogenicity of nucleic acids released from dying tumor cells. Our findings define a mechanism whereby tumor microenvironments suppress antitumor immunity mediated by nucleic acids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TIM-3 on TADCs.
Figure 2: TIM-3 suppresses innate responses to nucleic acids.
Figure 3: TIM-3 impedes the in vivo antitumor activities of DNA.
Figure 4: Type I interferon and IL-12 mediate anti-TIM-3-mediated antitumor responses.
Figure 5: TIM-3 regulates innate responses by a galectin-9-independent mechanism.
Figure 6: TIM-3 serves as a putative receptor for HMGB1.
Figure 7: TIM-3 inhibits the recruitment of nucleic acids into endosomes.
Figure 8: TIM-3 impedes the antitumor effects of chemotherapy.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  2. Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  Google Scholar 

  3. Bindea, G., Mlecnik, B., Fridman, W.H., Pages, F. & Galon, J. Natural immunity to cancer in humans. Curr. Opin. Immunol. 22, 215–222 (2010).

    Article  CAS  Google Scholar 

  4. Dougan, M. & Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009).

    Article  CAS  Google Scholar 

  5. Rabinovich, G.A., Gabrilovich, D. & Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  Google Scholar 

  6. Drake, C.G., Jaffee, E. & Pardoll, D.M. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  CAS  Google Scholar 

  7. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  Google Scholar 

  8. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  Google Scholar 

  9. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

    Article  CAS  Google Scholar 

  10. Poeck, H. et al. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med. 14, 1256–1263 (2008).

    Article  CAS  Google Scholar 

  11. Besch, R. et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 119, 2399–2411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuchroo, V.K., Dardalhon, V., Xiao, S. & Anderson, A.C. New roles for TIM family members in immune regulation. Nat. Rev. Immunol. 8, 577–580 (2008).

    Article  CAS  Google Scholar 

  13. Sánchez-Fueyo, A. et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat. Immunol. 4, 1093–1101 (2003).

    Article  Google Scholar 

  14. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  Google Scholar 

  15. Anderson, A.C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 1141–1143 (2007).

    Article  CAS  Google Scholar 

  16. Zhou, Q. et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117, 4501–4510 (2011).

    Article  CAS  Google Scholar 

  17. Munn, D.H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    Article  CAS  Google Scholar 

  18. Norian, L.A. et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res. 69, 3086–3094 (2009).

    Article  CAS  Google Scholar 

  19. Gabrilovich, D.I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  Google Scholar 

  20. Bowne, W.B. et al. Coupling and uncoupling of tumor immunity and autoimmunity. J. Exp. Med. 190, 1717–1722 (1999).

    Article  CAS  Google Scholar 

  21. Ngiow, S.F. et al. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res. 71, 3540–3551 (2011).

    Article  CAS  Google Scholar 

  22. Drobits, B. et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J. Clin. Invest. 122, 575–585 (2012).

    Article  CAS  Google Scholar 

  23. Nagahara, K. et al. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J. Immunol. 181, 7660–7669 (2008).

    Article  CAS  Google Scholar 

  24. Jayaraman, P. et al. Tim3 binding to galectin-9 stimulates antimicrobial immunity. J. Exp. Med. 207, 2343–2354 (2010).

    Article  CAS  Google Scholar 

  25. Dardalhon, V. et al. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J. Immunol. 185, 1383–1392 (2010).

    Article  CAS  Google Scholar 

  26. Nakayama, M. et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113, 3821–3830 (2009).

    Article  CAS  Google Scholar 

  27. DeKruyff, R.H. et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J. Immunol. 184, 1918–1930 (2010).

    Article  CAS  Google Scholar 

  28. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  Google Scholar 

  29. Sims, G.P., Rowe, D.C., Rietdijk, S.T., Herbst, R. & Coyle, A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    Article  CAS  Google Scholar 

  30. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  Google Scholar 

  31. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    Article  CAS  Google Scholar 

  32. Cao, E. et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity 26, 311–321 (2007).

    Article  CAS  Google Scholar 

  33. Santiago, C. et al. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27, 941–951 (2007).

    Article  CAS  Google Scholar 

  34. Blasius, A.L. & Beutler, B. Intracellular toll-like receptors. Immunity 32, 305–315 (2010).

    Article  CAS  Google Scholar 

  35. Fujioka, Y. et al. The Ras-PI3K signaling pathways is involved in clathrin-independnet endocytosis and the internalization of influenza viruses. PLoS ONE 6, e16324 (2011).

    Article  CAS  Google Scholar 

  36. Green, D.R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  Google Scholar 

  37. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  Google Scholar 

  38. Lin, Y. et al. Effective post-transplant antitumor immunity is associated with TLR-stimulating nucleic acid-immunoglobulin complexes in humans. J. Clin. Invest. 121, 1574–1584 (2011).

    Article  CAS  Google Scholar 

  39. Jones, R.B. et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med. 205, 2763–2779 (2008).

    Article  CAS  Google Scholar 

  40. Nobumoto, A. et al. Galectin-9 expands unique macrophages exhibiting plasmacytoid dendritic cell-like macrophages that activate NK cells in tumor-bearing mice. Clin. Immunol. 130, 322–330 (2009).

    Article  CAS  Google Scholar 

  41. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  Google Scholar 

  42. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  Google Scholar 

  43. Zheng, L. et al. Fen1 mutations results in autoimmunity, chronic inflammation and cancers. Nat. Med. 13, 812–819 (2007).

    Article  CAS  Google Scholar 

  44. Anderson, U. & Tracy, K.J. HMGB1 in a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29, 139–162 (2011).

    Article  Google Scholar 

  45. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  Google Scholar 

  46. Kikushige, Y. et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7, 708–717 (2010).

    Article  CAS  Google Scholar 

  47. Jan, M. et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc. Natl. Acad. Sci. USA 108, 5009–5014 (2011).

    Article  CAS  Google Scholar 

  48. Sabatos, C.A. et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol. 4, 1102–1110 (2003).

    Article  CAS  Google Scholar 

  49. Kinnebrew, M.A. et al. Interleukin 23 production by intestinal CD103+ CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276–287 (2012).

    Article  CAS  Google Scholar 

  50. Najima, Y. et al. High mobility group protein-B1 interacts with sterol regulatory element-binding proteins to enhance their DNA binding. J. Biol. Chem. 280, 27523–27532 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bianchi (San Raffaele University) for MEFs deficient in HMGB1 and HMGB2; O. Takeuchi and S. Akira (Osaka University) for mice deficient in both TBK1 and TNF; J. Wolchok (Memorial Sloan-Kettering Cancer Center) for plasmids encoding gp100 and TRP-2; G. Dranoff for comments on the manuscript; and T. Yamashina for assistance with animal care. Supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (H. Yagita and M.J.), the National Cancer Center Research and Development Fund (H.Ya.), the Institute for Genetic Medicine of Hokkaido University (M.J., M.H. and H.Ya.), the Takeda Science Foundation (M.J.), the Sumitomo Foundation (M.J.), Terumo Life Science Foundation (M.J.), Senshin Medical Research Foundation (M.J.) and Japan Leukemia Research Foundation (M.J.).

Author information

Authors and Affiliations

Authors

Contributions

M.J. and H.Ya. designed the experiments; S.C., M.B., H.A., H.Yo., Y.F. and M.J. prepared reagents and did the experiments; S.C., M.B., H.A., H.Yo., Y.F., Y.O., J.D.C., M.H., T.U., A.T., H.Ya. and M.J. analyzed and discussed the data; I.K. and H.D.-A. provided clinical samples; H.A., J.V.G., J.D.C., M.H. and H.Ya. developed new materials; and M.J. was responsible for the overall study design and writing the manuscript.

Corresponding author

Correspondence to Masahisa Jinushi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiba, S., Baghdadi, M., Akiba, H. et al. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13, 832–842 (2012). https://doi.org/10.1038/ni.2376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2376

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer