Skip to main content

Advertisement

Log in

Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia

Journal of Neurology Aims and scope Submit manuscript

Abstract

Imaging of type 1 metabotropic glutamate receptor (mGluR1) has recently become possible using positron emission tomography (PET). We aimed to examine the relationship between mGluR1 and cerebellar ataxia. Families with spinocerebellar ataxia type 19/22 (SCA19/22) and SCA6, six patients with sporadic SCA, and 26 healthy subjects underwent PET using an mGluR1 radiotracer. Volumes-of-interest were placed on the anterior and posterior lobes and vermis. The binding potential (BPND) was calculated to estimate mGluR1 availability. A partial volume correction was applied to the BPND values. The Scale for the Assessment and Rating of Ataxia (SARA) score were measured. In each patient with SCA19/22 and SCA6, the anterior lobe showed the highest decrease rates in the BPND values, compared with healthy subjects. In the families with SCA19/22 and SCA6, the disease durations and SARA scores were shorter and lower, respectively, in the offspring, compared with the parents. However, the offspring paradoxically showed lower BPND values, especially in the anterior lobe, compared with the parents. The patients with sporadic SCA showed significantly lower BPND values in all subregions than healthy subjects. The BPND values significantly correlated with the SARA scores in all participants. In conclusion, these results showed a decrease in mGluR1 availability in patients with hereditary and sporadic SCA, a correlation between mGluR1 availability and degree of cerebellar ataxia, and paradoxical findings in two families. These results suggest the potential use of mGluR1 imaging as a specific biomarker of cerebellar ataxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Moriguchi Jeckel CM, Ishiwata K (2013) Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 40(2):214–220. doi:10.1016/j.nucmedbio.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  2. Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, Fujinaga M, Yamasaki T, Zhang MR, Ishiwata K (2013) Initial human PET studies of metabotropic glutamate receptor type 1 ligand 11C-ITMM. J Nucl Med 54(8):1302–1307. doi:10.2967/jnumed.113.119891

    Article  CAS  PubMed  Google Scholar 

  3. Martin LJ, Blackstone CD, Huganir RL, Price DL (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9(2):259–270

    Article  CAS  PubMed  Google Scholar 

  4. Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322(1):121–135. doi:10.1002/cne.903220110

    Article  CAS  PubMed  Google Scholar 

  5. Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11(4):771–787

    Article  CAS  PubMed  Google Scholar 

  6. Yamasaki T, Maeda J, Fujinaga M, Nagai Y, Hatori A, Yui J, Xie L, Nengaki N, Zhang MR (2014) PET brain kinetics studies of (11)C-ITMM and (11)C-ITDM, radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate. Am J Nucl Med Mol Imaging 4(3):260–269

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamasaki T, Fujinaga M, Maeda J, Kawamura K, Yui J, Hatori A, Yoshida Y, Nagai Y, Tokunaga M, Higuchi M, Suhara T, Fukumura T, Zhang MR (2012) Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging 39(4):632–641. doi:10.1007/s00259-011-1995-6

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Huang Y (2014) In vivo imaging of the metabotropic glutamate receptor 1 (mGluR1) with positron emission tomography: recent advance and perspective. Curr Med Chem 21(1):113–123

    Article  CAS  PubMed  Google Scholar 

  9. Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60(4):536–581. doi:10.1124/pr.108.000166

    Article  CAS  PubMed  Google Scholar 

  10. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA, Tonegawa S (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79(2):377–388

    Article  CAS  PubMed  Google Scholar 

  11. Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M, Jaarsma D, Henzen-Logmans S, Vecht C, De Zeeuw C, Sekiyama N, Nakanishi S, Shigemoto R (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342(1):21–27. doi:10.1056/NEJM200001063420104

    Article  CAS  PubMed  Google Scholar 

  12. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288(5472):1832–1835

    Article  CAS  PubMed  Google Scholar 

  13. Notartomaso S, Zappulla C, Biagioni F, Cannella M, Bucci D, Mascio G, Scarselli P, Fazio F, Weisz F, Lionetto L, Simmaco M, Gradini R, Battaglia G, Signore M, Puliti A, Nicoletti F (2013) Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. Mol Brain 6:48. doi:10.1186/1756-6606-6-48

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ishibashi K, Miura Y, Ishikawa K, Ishii K, Ishiwata K (2015) Decreased metabotropic glutamate receptor type 1 availability in a patient with spinocerebellar ataxia type 6: a (11)C-ITMM PET study. J Neurol Sci 355(1–2):202–205. doi:10.1016/j.jns.2015.05.041

    Article  PubMed  Google Scholar 

  15. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720. doi:10.1212/01.wnl.0000219042.60538.92

    Article  CAS  PubMed  Google Scholar 

  16. Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, Soong BW (2012) Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol 72(6):859–869. doi:10.1002/ana.23701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4(3 Pt 1):153–158. doi:10.1006/nimg.1996.0066

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Carson RE (2002) Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 22(12):1440–1452. doi:10.1097/00004647-200212000-00004

    Article  Google Scholar 

  19. Meltzer CC, Leal JP, Mayberg HS, Wagner HN Jr, Frost JJ (1990) Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 14(4):561–570

    Article  CAS  PubMed  Google Scholar 

  20. Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD (2001) Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol 22(6):1161–1167

    CAS  PubMed  Google Scholar 

  21. Waite LM, Broe GA, Creasey H, Grayson D, Edelbrock D, O’Toole B (1996) Neurological signs, aging, and the neurodegenerative syndromes. Arch Neurol 53(6):498–502

    Article  CAS  PubMed  Google Scholar 

  22. Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466(3):356–365. doi:10.1002/cne.10884

    Article  PubMed  Google Scholar 

  23. Verbeek DS, Schelhaas JH, Ippel EF, Beemer FA, Pearson PL, Sinke RJ (2002) Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 111(4–5):388–393. doi:10.1007/s00439-002-0782-7

    Article  CAS  PubMed  Google Scholar 

  24. Schelhaas HJ, Verbeek DS, Van de Warrenburg BP, Sinke RJ (2004) SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain J Neurol 127 (Pt 1):E6. doi:10.1093/brain/awh036 (author reply E7)

  25. Chung MY, Lu YC, Cheng NC, Soong BW (2003) A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain J Neurol 126(Pt 6):1293–1299

    Article  Google Scholar 

  26. Duarri A, Jezierska J, Fokkens M, Meijer M, Schelhaas HJ, den Dunnen WF, van Dijk F, Verschuuren-Bemelmans C, Hageman G, van de Vlies P, Kusters B, van de Warrenburg BP, Kremer B, Wijmenga C, Sinke RJ, Swertz MA, Kampinga HH, Boddeke E, Verbeek DS (2012) Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol 72(6):870–880. doi:10.1002/ana.23700

    Article  CAS  PubMed  Google Scholar 

  27. Seidel K, Kusters B, den Dunnen WF, Bouzrou M, Hageman G, Korf HW, Schelhaas HJ, Verbeek D, Rub U (2014) First patho-anatomical investigation of the brain of a SCA19 patient. Neuropathol Appl Neurobiol 40(5):640–644. doi:10.1111/nan.12128

    Article  PubMed  Google Scholar 

  28. Schelhaas HJ, van de Warrenburg BP (2005) Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum 4(1):51–54. doi:10.1080/14734220510007888

    Article  CAS  PubMed  Google Scholar 

  29. Rub U, Schols L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66. doi:10.1016/j.pneurobio.2013.01.001

    Article  PubMed  Google Scholar 

  30. Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, Harada K, Nakamagoe K, Komatsuzaki Y, Satoh A, Doi M, Ogata T, Kanazawa I, Shoji S, Mizusawa H (1999) Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 67(1):86–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42(6):933–950. doi:10.1002/ana.410420616

    Article  CAS  PubMed  Google Scholar 

  32. Kato T, Tanaka F, Yamamoto M, Yosida E, Indo T, Watanabe H, Yoshiwara T, Doyu M, Sobue G (2000) Sisters homozygous for the spinocerebellar ataxia type 6 (SCA6)/CACNA1A gene associated with different clinical phenotypes. Clin Genet 58(1):69–73

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi H, Ishikawa K, Tsutsumi T, Fujigasaki H, Kawata A, Okiyama R, Fujita T, Yoshizawa K, Yamaguchi S, Tomiyasu H, Yoshii F, Mitani K, Shimizu N, Yamazaki M, Miyamoto T, Orimo T, Shoji S, Kitamura K, Mizusawa H (2004) A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet 49(5):256–264. doi:10.1007/s10038-004-0142-7

    Article  PubMed  Google Scholar 

  34. Klockgether T (2010) Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 9(1):94–104. doi:10.1016/S1474-4422(09)70305-9

    Article  CAS  PubMed  Google Scholar 

  35. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501. doi:10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Young Scientists (B) no. 15K19503 to KIshibashi and for Scientific Research (B) no. 24390298 to KIshiwata from the Japan Society for the Promotion of Science. The authors thank the people of Research Team for Neuroimaging at the Tokyo Metropolitan Institute of Gerontology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ishibashi.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard

The study was approved by the Ethics Committee of the Tokyo Metropolitan Institute of Gerontology (H26-49).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, K., Miura, Y., Ishikawa, K. et al. Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia. J Neurol 263, 2179–2187 (2016). https://doi.org/10.1007/s00415-016-8248-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8248-3

Keywords

Navigation