Skip to main content

Advertisement

Log in

Common Variable Immunodeficiency Caused by FANC Mutations

Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Common variable immunodeficiency (CVID) is the most common adult-onset primary antibody deficiency disease due to various causative genes. Several genes, which are known to be the cause of different diseases, have recently been reported as the cause of CVID in patients by performing whole exome sequencing (WES) analysis. Here, we found FANC gene mutations as a cause of adult-onset CVID in two patients. B cells were absent and CD4+ T cells were skewed toward CD45RO+ memory T cells. T-cell receptor excision circles (TRECs) and signal joint kappa-deleting recombination excision circles (sjKRECs) were undetectable in both patients. Both patients had no anemia, neutropenia, or thrombocytopenia. Using WES, we identified compound heterozygous mutations of FANCE in one patient and homozygous mutation of FANCA in another patient. The impaired function of FANC protein complex was confirmed by a monoubiquitination assay and by chromosome fragility test. We then performed several immunological evaluations including quantitative lymphocyte analysis and TRECs/sjKRECs analysis for 32 individuals with Fanconi anemia (FA). In total, 22 FA patients (68.8%) were found to have immunological abnormalities, suggesting that such immunological findings may be common in FA patients. These data indicate that FANC mutations are involved in impaired lymphogenesis probably by the accumulation of DNA replication stress, leading to CVID. It is important to diagnose FA because it drastically changes clinical management. We propose that FANC mutations can cause isolated immunodeficiency in addition to bone marrow failure and malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nat Rev Immunol. 2013;13:519–33.

    Article  CAS  PubMed  Google Scholar 

  2. Wehr C, Kivioja T, Schmitt C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111:77–85.

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92:34–48.

    Article  CAS  PubMed  Google Scholar 

  4. Salzer U, Warnatz K, Peter HH. Common variable immunodeficiency—an update. Arthritis Res Ther. 2012;14:223.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parvaneh N, Casanova J-L, Notarangelo LD, Conley ME. Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol. 2013;131:314–23.

    Article  PubMed  Google Scholar 

  6. Al-Herz W, Bousfiha A, Casanova J-L, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014;5:162.

    PubMed  PubMed Central  Google Scholar 

  7. Fliegauf ML, Bryant V, Frede N, et al. Haploinsufficiency of the NF-κB1 subunit p50 in common variable immunodeficiency. Am J Hum Genet. 2015;97:389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015;9:32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol. 2015;37:49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood. 1994;84:1650–5.

    CAS  PubMed  Google Scholar 

  11. Fagerlie SR, Bagby GC. Immune defects in Fanconi anemia. Crit Rev Immunol. 2006;26:81–96.

    Article  CAS  PubMed  Google Scholar 

  12. Korthof ET, Svahn J, Peffault de Latour R, et al. Immunological profile of Fanconi anemia: a multicentric retrospective analysis of 61 patients. Am J Hematol. 2013;88:472–6.

    Article  CAS  PubMed  Google Scholar 

  13. Holmgren SC, Goren EM, Wood BL, Becker PS, Taylor JA. Immune defects in a mouse model of Fanconi anaemia. Br J Haematol. 2012;159:246–50.

    Article  CAS  PubMed  Google Scholar 

  14. Picard C, Al-Herz W, Bousfiha A, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35:696–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gennery AR. Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. Br Med Bull. 2006;77–78:71–85.

    Article  PubMed  Google Scholar 

  16. Kamae C, Nakagawa N, Sato H, et al. Common variable immunodeficiency classification by quantifying T-cell receptor and immunoglobulin κ-deleting recombination excision circles. J Allergy Clin Immunol. 2013;131:1437–40.e5.

    Article  PubMed  Google Scholar 

  17. Ameratunga R, Brewerton M, Slade C, Jordan A, Gillis D, Steele R, Koopmans W, Woon S-T. Comparison of diagnostic criteria for common variable immunodeficiency disorder. Front Immunol. 2014;5:415.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hira A, Yabe H, Yoshida K, et al. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood. 2013;122:3206–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WCJ, Groeneveld K, Hooijkaas H, van Dongen JJM. Immunophenotyping of blood lymphocytes in childhood reference values for lymphocyte subpopulations. J Pediatr. 1997;130:388–93.

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa N, Imai K, Kanegane H, et al. Quantification of κ-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. J Allergy Clin Immunol. 2011;128:223–225.e2.

    Article  CAS  PubMed  Google Scholar 

  21. Morinishi Y, Imai K, Nakagawa N, et al. Identification of severe combined immunodeficiency by T-cell receptor excision circles quantification using neonatal Guthrie cards. J Pediatr. 2009;155:829–33.

    Article  CAS  PubMed  Google Scholar 

  22. Yabe M, Yabe H, Hamanoue S, et al. In vitro effect of fludarabine, cyclophosphamide, and cytosine arabinoside on chromosome breakage in Fanconi anemia patients: relevance to stem cell transplantation. Int J Hematol. 2007;85:354–61.

    Article  CAS  PubMed  Google Scholar 

  23. Pinto FO, Leblanc T, Chamousset D, et al. Diagnosis of Fanconi anemia in patients with bone marrow failure. Haematologica. 2009;94:487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arai A, Imadome K-I, Watanabe Y, Yoshimori M, Koyama T, Kawaguchi T, Nakaseko C, Fujiwara S, Miura O. Clinical features of adult-onset chronic active Epstein–Barr virus infection: a retrospective analysis. Int J Hematol. 2011;93:602–9.

    Article  PubMed  Google Scholar 

  25. Kawa K, Sawada A, Sato M, et al. Excellent outcome of allogeneic hematopoietic SCT with reduced-intensity conditioning for the treatment of chronic active EBV infection. Bone Marrow Transplant. 2011;46:77–83.

    Article  CAS  PubMed  Google Scholar 

  26. Tomida J, Itaya A, Shigechi T, et al. A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res. 2013;41:6930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ceccaldi R, Parmar K, Mouly E, et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell. 2012;11:36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yagasaki H, Hamanoue S, Oda T, Nakahata T, Asano S, Yamashita T. Identification and characterization of novel mutations of the major Fanconi anemia gene FANCA in the Japanese population. Hum Mutat. 2004;24:481–90.

    Article  CAS  PubMed  Google Scholar 

  29. Bouchlaka C, Abdelhak S, Amouri A, et al. Fanconi anemia in Tunisia: high prevalence of group a and identification of new FANCA mutations. J Hum Genet. 2003;48:352–61.

    Article  CAS  PubMed  Google Scholar 

  30. Myers KC, Bleesing JJ, Davies SM, et al. Impaired immune function in children with Fanconi anaemia. Br J Haematol. 2011;154:234–40.

    Article  CAS  PubMed  Google Scholar 

  31. Trotti A, Colevas AD, Setser A, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13:176–81.

    Article  PubMed  Google Scholar 

  32. Latt SA, Stetten G, Juergens LA, Buchanan GR, Gerald PS. Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi’s anemia. Proc Natl Acad Sci U S A. 1975;72:4066–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood. 2006;107:4223–33.

    Article  CAS  PubMed  Google Scholar 

  34. Maffucci P, Filion CA, Boisson B, Itan Y, Shang L, Casanova J-L, Cunningham-Rundles C. Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front Immunol. 2016;7:220.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuehn HS, Boisson B, Cunningham-Rundles C, et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N Engl J Med. 2016;374:1032–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allenspach EJ, Bellodi C, Jeong D, Kopmar N, Nakamura T, Ochs HD, Ruggero D, Skoda-Smith S, Shimamura A, Torgerson TR. Common variable immunodeficiency as the initial presentation of dyskeratosis congenita. J Allergy Clin Immunol. 2013; doi:10.1016/j.jaci.2012.11.052.

    PubMed  PubMed Central  Google Scholar 

  37. Smith J, Andrau J, Kallenbach S, Laquerbe A, Doyen N, Papadopoulo D. Abnormal rearrangements associated with V(D)J recombination in fanconi anemia. J Mol Biol. 1998;281:815–25.

    Article  CAS  PubMed  Google Scholar 

  38. Sertorio M, Amarachintha S, Wilson A, Pang Q. Loss of Fancc impairs antibody-secreting cell differentiation in mice through deregulating the Wnt signaling pathway. J Immunol. 2016;196:2986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 2016;35:909–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Defense; the Ministry of Education, Culture, Sports, Science, and Technology (nos. 26293250 and 15 K15396); the Ministry of Health, Labor, and Welfare (no. 14427260); the Kawano Masanori Memorial Public Interest Incorporated Foundation for Promotion of Pediatrics; the Practical Research for Rare/Intractable Diseases from Japan Agency for Medical Research and Development, AMED; The Japan Foundation for Pediatric Research; and Drs. M. and W. Hirose, Dr. H. Matsuda, and Dr. H. Seto. We thank Dr. Yuki Tsujita, Dr. Yumiko Ogura, and Dr. Hirokazu Kawaguchi for medical support. We would also like to thank Ms. Kaori Tomita, Ms. Kimiko Gasa, and Dr. Naomi Terada for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Contributions: Y.S., N.M., K.I., A.A., M.Y., and H.Y. treated the patients and designed the clinical laboratory tests; K.S. and N.M. performed flow cytometric analysis; K.H. performed TRECs and sjKRECs analyses; M. Takagi established skin fibroblast of patient 2; M.Y. performed the chromosome fragility tests; A.H. and M. Takata performed monoubiquitination assay and validation of FANC mutations; K.Y., Y.O., Y.S., K.C., H.T., S.M., H.M., S.K., and S.O. performed WES of patient 1; O.O. performed WES of patient 2; K.I., T.M., and S.N. designed the overall study, supervised the experiments, and performed analyses and interpretation of the data.

Corresponding author

Correspondence to Kohsuke Imai.

Ethics declarations

Disclosure of Conflicts of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekinaka, Y., Mitsuiki, N., Imai, K. et al. Common Variable Immunodeficiency Caused by FANC Mutations. J Clin Immunol 37, 434–444 (2017). https://doi.org/10.1007/s10875-017-0396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-017-0396-4

Keywords

Navigation