Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recurrent genetic defects on chromosome 7q in myeloid neoplasms

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  2. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 2010; 24: 1799–1804.

    Article  CAS  PubMed  Google Scholar 

  3. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010; 42: 665–667.

    Article  CAS  PubMed  Google Scholar 

  4. Jerez A, Sugimoto Y, Makishima H, Verma A, Jankowska AM, Przychodzen B et al. Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 119: 6109–6117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomez-Segui I, Makishima H, Jerez A, Yoshida K, Przychodzen B, Miyano S et al. Novel recurrent mutations in the RAS-LIKE GTP-Binding gene RIT1 in myeloid malignancies. Leukemia 2013; 27: 1943–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kipreos ET, Lander LE, Wing JP, He WW, Hedgecock EM . cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 1996; 85: 829–839.

    Article  CAS  PubMed  Google Scholar 

  7. Marti A, Wirbelauer C, Scheffner M, Krek W . Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1999; 1: 14–19.

    Article  CAS  PubMed  Google Scholar 

  8. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999; 99: 71–80.

    Article  CAS  PubMed  Google Scholar 

  9. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  10. Howell VM, Jones JM, Bergren SK, Li L, Billi AC, Avenarius MR et al. Evidence for a direct role of the disease modifier SCNM1 in splicing. Hum Mol Genet 2007; 16: 2506–2516.

    Article  CAS  PubMed  Google Scholar 

  11. Singh H, Lane AA, Correll M, Przychodzen B, Sykes DB, Stone RM et al. Putative RNA-splicing gene LUC7L2 on 7q34 represents a candidate gene in pathogenesis of myeloid malignancies. Blood Cancer J 2013; 3: e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nepveu A . Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 2001; 270: 1–15.

    Article  CAS  PubMed  Google Scholar 

  13. Hulea L, Nepveu A . CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene 2012; 497: 18–26.

    Article  CAS  PubMed  Google Scholar 

  14. Thoennissen NH, Lasho T, Thoennissen GB, Ogawa S, Tefferi A, Koeffler HP . Novel CUX1 missense mutation in association with 7q- at leukemic transformation of MPN. Am J Hematol 2011; 86: 703–705.

    Article  CAS  PubMed  Google Scholar 

  15. Cadieux C, Fournier S, Peterson AC, Bedard C, Bedell BJ, Nepveu A . Transgenic mice expressing the p75 CCAAT-displacement protein/Cut homeobox isoform develop a myeloproliferative disease-like myeloid leukemia. Cancer Res 2006; 66: 9492–9501.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Cancer Genome Atlas (TCGA) for providing access to the whole-genome sequencing results described in the text. This work is supported by the National Institutes of Health (NIH; Bethesda, MD, USA) grants RO1 HL082983 (JPM), U54 RR019391(JPM and MAS) and K24 HL077522(JPM); AA & MDS International Foundation (Rockville, MD, USA; HM) and Scott Hamilton CARES grant (Cleveland, OH, USA; HM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Maciejewski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosono, N., Makishima, H., Jerez, A. et al. Recurrent genetic defects on chromosome 7q in myeloid neoplasms. Leukemia 28, 1348–1351 (2014). https://doi.org/10.1038/leu.2014.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.25

This article is cited by

Search

Quick links