Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Somatic RHOA mutation in angioimmunoblastic T cell lymphoma

Abstract

Angioimmunoblastic T cell lymphoma (AITL) is a distinct subtype of peripheral T cell lymphoma characterized by generalized lymphadenopathy and frequent autoimmune-like manifestations1,2. Although frequent mutations in TET2, IDH2 and DNMT3A, which are common to various hematologic malignancies3,4, have been identified in AITL5,6,7,8, the molecular pathogenesis specific to this lymphoma subtype is unknown. Here we report somatic RHOA mutations encoding a p.Gly17Val alteration in 68% of AITL samples. Remarkably, all cases with the mutation encoding p.Gly17Val also had TET2 mutations. The RHOA mutation encoding p.Gly17Val was specifically identified in tumor cells, whereas TET2 mutations were found in both tumor cells and non-tumor hematopoietic cells. RHOA encodes a small GTPase that regulates diverse biological processes. We demonstrated that the Gly17Val RHOA mutant did not bind GTP and also inhibited wild-type RHOA function. Our findings suggest that impaired RHOA function in cooperation with preceding loss of TET2 function contributes to AITL-specific pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of a RHOA mutation encoding p.Gly17Val in PTCL by whole-exome sequencing.
Figure 2: Relationship between RHOA, TET2, IDH2 and DNMT3A mutations in PTCL.
Figure 3: Dominant-negative effect of the Gly17Val RHOA mutant on wild-type RHOA.
Figure 4: Effects of the Gly17Val RHOA mutant on transcriptional regulation and actin cytoskeleton formation in NIH3T3 cells.
Figure 5: Effect of Gly17Val RHOA on T cells.

Similar content being viewed by others

References

  1. Swerdlow, S.H. et al. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues 4th edn, 306–311 (IARC Press, Lyon, France, 2008).

  2. de Leval, L. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952–4963 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  4. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemonnier, F. et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120, 1466–1469 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Couronné, L., Bastard, C. & Bernard, O.A. TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl. J. Med. 366, 95–96 (2012).

    Article  PubMed  Google Scholar 

  8. Cairns, R.A. et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119, 1901–1903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodríguez-Pinilla, S.M. et al. Peripheral T-cell lymphoma with follicular T-cell markers. Am. J. Surg. Pathol. 32, 1787–1799 (2008).

    Article  PubMed  Google Scholar 

  10. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bustelo, X.R., Sauzeau, V. & Berenjeno, I.M. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29, 356–370 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ihara, K. et al. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273, 9656–9666 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu, T. et al. An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP. Implications for the GDP/GTP exchange mechanism. J. Biol. Chem. 275, 18311–18317 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Reid, T. et al. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the rho-binding domain. J. Biol. Chem. 271, 13556–13560 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Arthur, W.T., Ellerbroek, S.M., Der, C.J., Burridge, K. & Wennerberg, K. XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J. Biol. Chem. 277, 42964–42972 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, Z. et al. Luciferase reporter assay system for deciphering GPCR pathways. Curr. Chem. Genomics 4, 84–91 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ridley, A.J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mootha, V.K. et al. PGC-1α–responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hill, C.S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Mylona, A. et al. The essential function for serum response factor in T-cell development reflects its specific coupling to extracellular signal–regulated kinase signaling. Mol. Cell. Biol. 31, 267–276 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Fleige, A. et al. Serum response factor contributes selectively to lymphocyte development. J. Biol. Chem. 282, 24320–24328 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Karlsson, R., Pedersen, E.D., Wang, Z. & Brakebusch, C. Rho GTPase function in tumorigenesis. Biochim. Biophys. Acta 1796, 91–98 (2009).

    CAS  PubMed  Google Scholar 

  27. Hébert, M. et al. Rho-ROCK–dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells. J. Immunol. 181, 5963–5973 (2008).

    Article  PubMed  Google Scholar 

  28. Cleverley, S.C., Costello, P.S., Henning, S.W. & Cantrell, D.A. Loss of Rho function in the thymus is accompanied by the development of thymic lymphoma. Oncogene 19, 13–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi, T. et al. Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming. PLoS ONE 7, e41007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guilluy, C., Dubash, A.D. & Garcia-Mata, R. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus. Nat. Protoc. 6, 2050–2060 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Okoshi, N. Obara, Y. Yokoyama, H. Nishikii, N. Kurita and M. Seki for contributing to sample collection and banking. We also thank Y. Sakashita and T. Takahashi for technical assistance, and S. Narumiya and I. Kitabayashi for efficient discussion. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22134006 to S.O.; 22130002, 24390241, 25112703 and 25670444 to S.C.; 25461407 to M.S.-Y.) and was supported by the Sagawa Foundation for Promotion of Cancer Research, the Naito Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research (M.S.-Y.).

Author information

Authors and Affiliations

Authors

Contributions

M.S.-Y. prepared DNA samples, sorted the tumor cells, resequenced the samples, and sorted and integrated information. T.E. analyzed the function of wild-type and mutant RHOA. K.Y. resequenced the samples and contributed to the resequencing data analyses. Y. Shiraishi, E.N., K.C., H.T. and S.M. performed bioinformatics analyses of the resequencing data. R.I. and O.N. created the model structure for mutant RHOA. Y.M., H.M., Y.K., R.N.-M., N.B.T., K.S., T.N., Y.H. and M.N. contributed to sample collection and preparation. N.T., S. Sakata, N.N. and K.T. immunostained specimens and performed pathohistological analyses. Y. Okuno and M.S. contributed to the resequencing. A.S.-O. and Yusuke Sato contributed to mRNA sequencing. K.I., Y. Ohta, J.F., S. Shimizu, T.K., Yuji Sato and T.I. collected samples. M.S.-Y., T.E., K.Y., S.O. and S.C. generated figures and tables, and wrote the manuscript. All authors participated in discussions and interpretation of the data and results.

Corresponding authors

Correspondence to Seishi Ogawa or Shigeru Chiba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1–14 and Supplementary Note (PDF 6808 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakata-Yanagimoto, M., Enami, T., Yoshida, K. et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46, 171–175 (2014). https://doi.org/10.1038/ng.2872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing