Glycobiology and Extracellular Matrices
EXTL2, a Member of the EXT Family of Tumor Suppressors, Controls Glycosaminoglycan Biosynthesis in a Xylose Kinase-dependent Manner*

https://doi.org/10.1074/jbc.M112.416909Get rights and content
Under a Creative Commons license
open access

Mutant alleles of EXT1 or EXT2, two members of the EXT gene family, are causative agents in hereditary multiple exostoses, and their gene products function together as a polymerase in the biosynthesis of heparan sulfate. EXTL2, one of three EXT-like genes in the human genome that are homologous to EXT1 and EXT2, encodes a transferase that adds not only GlcNAc but also N-acetylgalactosamine to the glycosaminoglycan (GAG)-protein linkage region via an α1,4-linkage. However, both the role of EXTL2 in the biosynthesis of GAGs and the biological significance of EXTL2 remain unclear. Here we show that EXTL2 transfers a GlcNAc residue to the tetrasaccharide linkage region that is phosphorylated by a xylose kinase 1 (FAM20B) and thereby terminates chain elongation. We isolated an oligosaccharide from the mouse liver, which was not detected in EXTL2 knock-out mice. Based on structural analysis by a combination of glycosidase digestion and 500-MHz 1H NMR spectroscopy, the oligosaccharide was found to be GlcNAcα1-4GlcUAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate), which was considered to be a biosynthetic intermediate of an immature GAG chain. Indeed, EXTL2 specifically transferred a GlcNAc residue to a phosphorylated linkage tetrasaccharide, GlcUAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate). Remarkably, the phosphorylated linkage pentasaccharide generated by EXTL2 was not used as an acceptor for heparan sulfate or chondroitin sulfate polymerases. Moreover, production of GAGs was significantly higher in EXTL2 knock-out mice than in wild-type mice. These results indicate that EXTL2 functions to suppress GAG biosynthesis that is enhanced by a xylose kinase and that the EXTL2-dependent mechanism that regulates GAG biosynthesis might be a “quality control system” for proteoglycans.

Glycobiology
Glycosaminoglycan
Glycosyltransferases
Proteoglycan
Proteoglycan Synthesis

Cited by (0)

*

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)-supported Program for the Strategic Research Foundation at Private Universities, 2012–2017 (to H. K.) and was supported in part by a Grant-in-Aid for Scientific Research in Innovative Areas 23110002 (Deciphering Sugar Chain-based Signals Regulating Integrative Neuronal Functions (to H. K.)) from MEXT, Japan.

This article contains supplemental Table 1 and Figs. 1 and 2.

1

Present address: Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Frontier Research Center for Post-Genomic Science and Technology, Nishi 11-choume, Kita 21-jo, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.