Luminal Domain of ATF6 Alone Is Sufficient for Sensing Endoplasmic Reticulum Stress and Subsequent Transport to the Golgi Apparatus

  • Sato Yoshimi
    Department of Biophysics, Graduate School of Science, Kyoto University
  • Nadanaka Satomi
    Department of Biophysics, Graduate School of Science, Kyoto University
  • Okada Tetsuya
    Department of Biophysics, Graduate School of Science, Kyoto University
  • Okawa Katsuya
    Drug Discovery Research Laboratories, Kyowa Hakko Kirin Co., Ltd.
  • Mori Kazutoshi
    Department of Biophysics, Graduate School of Science, Kyoto University

Bibliographic Information

Other Title
  • Luminal domain of ATF alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus

Search this article

Abstract

The transcription factor ATF6 is constitutively synthesized as a type II transmembrane protein embedded in the endoplasmic reticulum (ER). When unfolded proteins accumulate in the ER, ATF6 senses such ER stress via an as yet undetermined mechanism and relocates to the Golgi apparatus where it is cleaved by sequential action of Site-1 and Site-2 proteases, allowing liberated N-terminal fragments to translocate into the nucleus. This ATF6-mediated transcriptional induction of ER-localized molecular chaperones and folding enzymes together with components of ER-associated degradation leads to the maintenance of ER homeostasis in mammals. Here, we demonstrated that the luminal domain of ATF6 alone is sufficient for sensing ER stress and subsequent transportation to the Golgi apparatus. This domain of ATF6 was inserted between the N-terminal signal sequence and C-terminal tandem affinity purification tag. The resulting ATF6(C)-TAP translocated into the ER, where it was glycosylated and disulfide bonded. ATF6(C)-TAP occurred as monomer and dimer, and exhibited a relatively short half-life, similar to full-length ATF6. On application of dithiothreitol- or thapsigargin-induced ER stress, the ER chaperone BiP dissociated from ATF6(C)-TAP, and ATF6(C)-TAP was transported to the Golgi apparatus and then secreted into medium. Calnexin and protein disulfide isomerase were identified as cellular proteins capable of binding to ATF6(C)-TAP in addition to BiP, and subsequent analysis revealed that protein disulfide isomerase was bound to ATF6(C)-TAP with chaperone activity. These findings indicate that ATF6(C)-TAP can be used as a tool to isolate protein(s) that escort ATF6 from the ER to the Golgi apparatus in response to ER stress.<br>

Journal

Citations (7)*help

See more

References(30)*help

See more

Related Projects

See more

Details

Report a problem

Back to top