Skip to main content
Log in

Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells

Journal of Plant Research Aims and scope Submit manuscript

Abstract

To gain insight into the cellular functions of the mid1-complementing activity (MCA) family proteins, encoding putative Ca2+-permeable mechanosensitive channels, we isolated two MCA homologs of tobacco (Nicotiana tabacum) BY-2 cells, named NtMCA1 and NtMCA2. NtMCA1 and NtMCA2 partially complemented the lethality and Ca2+ uptake defects of yeast mutants lacking mechanosensitive Ca2+ channel components. Furthermore, in yeast cells overexpressing NtMCA1 and NtMCA2, the hypo-osmotic shock-induced Ca2+ influx was enhanced. Overexpression of NtMCA1 or NtMCA2 in BY-2 cells enhanced Ca2+ uptake, and significantly alleviated growth inhibition under Ca2+ limitation. NtMCA1-overexpressing BY-2 cells showed higher sensitivity to hypo-osmotic shock than control cells, and induced the expression of the touch-inducible gene, NtERF4. We found that both NtMCA1-GFP and NtMCA2-GFP were localized at the plasma membrane and its interface with the cell wall, Hechtian strands, and at the cell plate and perinuclear vesicles of dividing cells. NtMCA2 transcript levels fluctuated during the cell cycle and were highest at the G1 phase. These results suggest that NtMCA1 and NtMCA2 play roles in Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in BY-2 cells, by regulating the Ca2+ influx through the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Article  PubMed  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Buer CS, Weathers PJ, Swartzlander GA Jr (2000) Changes in Hechtian strands in cold-hardened cells measured by optical microsurgery. Plant Physiol 122:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    Article  PubMed  CAS  Google Scholar 

  • Chan CW, Schorrak LM, Smith RK Jr, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    Article  PubMed  CAS  Google Scholar 

  • Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215–231

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt T, Zimmermann S, Müller-Röber B (1997) Association of plant K +in channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Lett 409:166–170

    Article  PubMed  CAS  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21:71–88

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Schnell N, Chattaway J, Davies P, Dixon G, Sanders D (1997) The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419:259–262

    Article  PubMed  CAS  Google Scholar 

  • Galaviz-Hernandez C, Stagg C, de Ridder G, Tanaka TS, Ko MS, Schlessinger D, Nagaraja R (2003) Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene 309:81–89

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Saito M, Matsuoka H, Iida K, Iida H (2004) Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol 45:496–500

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK (1985) Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells. J Cell Biol 100:1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Kurusu T, Hasezawa S, Kuchitsu K (2011) Dynamic intracellular reorganization of cytoskeletons and the vacuole in defense responses and hypersensitive cell death in plants. J Plant Res 124:315–324

    Google Scholar 

  • Iida H, Yagawa Y, Anraku Y (1990) Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem 265:13391–13399

    PubMed  CAS  Google Scholar 

  • Iida H, Nakamura H, Ono T, Okumura MS, Anraku Y (1994) MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14:8259–8271

    PubMed  CAS  Google Scholar 

  • Iomini C, Li L, Mo W, Dutcher SK, Piperno G (2006) Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas. Curr Biol 16:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Kadota Y, Watanabe T, Fujii S, Maeda Y, Ohno R, Higashi K, Sano T, Muto S, Hasezawa S, Kuchitsu K (2005) Cell cycle dependence of elicitor-induced signal transduction in tobacco BY-2 cells. Plant Cell Physiol 46:156–165

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki M, Nagasawa M, Kojima I, Sato C, Naruse K, Sokabe M, Iida H (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886; report clarification (2000) Science 288:1347

    Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Kurusu T, Hamada J, Nokajima H, Kitagawa Y, Kiyoduka M, Takahashi A, Hanamata S, Ohno R, Hayashi T, Okada K, Koga J, Hirochika H, Yamane H, Kuchitsu K (2010) Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol 153:678–692

    Article  PubMed  CAS  Google Scholar 

  • Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K (2004) Identification of a putative voltage-gated Ca2+-permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol 45:693–702

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Rogulski K, Zhou Q, Sims PJ, Prochownik EV (2006) The negative c-Myc target onzin affects proliferation and apoptosis via its obligate interaction with phospholipid scramblase 1. Mol Cell Biol 26:3401–3413

    Article  PubMed  CAS  Google Scholar 

  • Mount RC, Jordan BE, Hadfield C (1996) Transformation of lithium-treated yeast cells and the selection of auxotrophic and dominant markers. Methods Mol Biol 53:139–145

    PubMed  CAS  Google Scholar 

  • Mudgil Y, Shiu SH, Stone SL, Salt JN, Goring DR (2004) A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family. Plant Physiol 134:59–66

    Article  PubMed  CAS  Google Scholar 

  • Muller EM, Locke EG, Cunningham KW (2001) Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159:1527–1538

    PubMed  CAS  Google Scholar 

  • Müller S, Wright AJ, Smith LG (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19:180–188

    Article  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Nakajima-Shimada J, Iida H, Tsuji FI, Anraku Y (1991) Monitoring of intracellular calcium in Saccharomyces cerevisiae with an apoaequorin cDNA expression system. Proc Natl Acad Sci USA 88:6878–6882

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Iida K, Nyunoya H, Iida H (2011) Determination of structural regions important for Ca2+ uptake activity in Arabidopsis MCA1 and MCA2 expressed in yeast. Plant Cell Physiol. doi:10.1093/pcp/pcr131

  • Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol 41:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Paidhungat M, Garrett S (1997) A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1 (Ts) growth defect. Mol Cell Biol 17:6339–6347

    PubMed  CAS  Google Scholar 

  • Rogulski K, Li Y, Rothermund K, Pu L, Watkins S, Yi F, Prochownik EV (2005) Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt-Mdm2-p53 pathway. Oncogene 24:7524–7541

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  • Sano T, Higaki T, Handa K, Kadota Y, Kuchitsu K, Hasezawa S, Hoffmann A, Endter J, Zimmermann U, Hedrich R, Roitsch T (2006) Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Lett 580:597–602

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Kutsuna N, Becker D, Hedrich R, Hasezawa S (2009) Outward-rectifying K+ channel activities regulate cell elongation and cell division of tobacco BY-2 cells. Plant J 57:55–64

    Article  PubMed  CAS  Google Scholar 

  • Smith IK (1978) Effect of plant growth regulators on calcium-stimulated serine transport into tobacco cells. Plant Physiol 62:949–953

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Ohmori M, Iida H (2003) Molecular dissection of the hydrophobic segments H3 and H4 of the yeast Ca2+ channel component Mid1. J Biol Chem 278:9647–9654

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Suda Y, Ikeda K, Ono M, Miyasaka H, Watanabe M, Sasaki K, Hirata K (2007) A novel gene with antisalt and anticadmium stress activities from a halotolerant marine green alga Chlamydomonas sp. W80. FEMS Microbiol Lett 271:48–52

    Article  PubMed  CAS  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008) Cytoplasmic calcium increases in response to change in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514

    Article  PubMed  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki K, Iida H (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284–1296

    Article  PubMed  CAS  Google Scholar 

  • Zhang DH, Callaham DA, Hepler PK (1990) Regulation of anaphase chromosome motion in Tradescantia stamen hair cells by calcium and related signaling agents. J Cell Biol 111:171–182

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann S, Talke I, Ehrhardt T, Nast G, Müller-Röber B (1998) Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiol 116:879–890

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yasuhiro Kadota, Ms. Yui Miki and Mr. Yasuhiro Sakurai for technical assistance, and Dr. Dierk Wanke for discussion. This work was supported in part by Grant-in-Aid for Scientific Research on Innovative Areas (21200067) to T. K., for Scientific Research on Priority Area (21026009 and 23120509) to H. I., for Scientific Research B (19370023) to K. K. and (21370017) to H. I., for Exploratory Research (21658118) to K. K., and by grants from Japan Science and Technology Agency, for CREST to H. I. and K. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Kuchitsu.

Additional information

T. Kurusu and T. Yamanaka contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurusu, T., Yamanaka, T., Nakano, M. et al. Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. J Plant Res 125, 555–568 (2012). https://doi.org/10.1007/s10265-011-0462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0462-6

Keywords

Navigation