1887

Abstract

The yeast gene encodes a homologue of the pore-forming α subunit of mammalian voltage-gated calcium channels. Cch1 cooperates with Mid1, a candidate for a putative, functional homologue of the mammalian regulatory subunit α/δ, and is essential for Ca influx induced by several stimuli. Here, we characterized two mutant alleles of , * (or -star, carrying four point mutations: V49A, N1066D, Y1145H and N1330S) and 2 (formerly designated ). The product of * displayed a marked increase in Ca uptake activity in the presence and absence of α-factor, and its increased activity was still dependent on Mid1. Mutations in * did not affect its susceptibility to regulation by calcineurin. In addition, not only was the N1066D mutation in the cytoplasmic loop between domains II and III responsible for the increased activity of Cch1*, but also substitution of another negatively charged amino acid Glu for Asn resulted in a significant increase in the Ca uptake activity of Cch1. This is the first report of a hyperactive mutation in Cch1. On the other hand, the allele possesses the P1228L mutation located in the extracellular S1–S2 linker of domain III. The Pro residue is highly conserved from fungi to humans, and the P1228L mutation led to a partial loss in Cch1 function, but did not affect the localization and expression of Cch1. The results extend our understanding of the structure–function relationship and functional regulation of Cch1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064030-0
2013-05-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/970.html?itemId=/content/journal/micro/10.1099/mic.0.064030-0&mimeType=html&fmt=ahah

References

  1. Bähring R., Covarrubias M.( 2011). Mechanisms of closed-state inactivation in voltage-gated ion channels. J Physiol 589:461–479 [View Article][PubMed]
    [Google Scholar]
  2. Bonilla M., Cunningham K. W.( 2003). Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast. Mol Biol Cell 14:4296–4305 [View Article][PubMed]
    [Google Scholar]
  3. Bonilla M., Nastase K. K., Cunningham K. W.( 2002). Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J 21:2343–2353 [View Article][PubMed]
    [Google Scholar]
  4. Catterall W. A.( 2000). Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555 [View Article][PubMed]
    [Google Scholar]
  5. Catterall W. A., Perez-Reyes E., Snutch T. P., Striessnig J.( 2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425 [View Article][PubMed]
    [Google Scholar]
  6. Courchesne W. E., Vlasek C., Klukovich R., Coffee S.( 2011). Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae. Arch Microbiol 193:323–334[PubMed]
    [Google Scholar]
  7. Cyert M. S., Thorner J.( 1992). Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol 12:3460–3469[PubMed]
    [Google Scholar]
  8. Fischer M., Schnell N., Chattaway J., Davies P., Dixon G., Sanders D.( 1997). The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419:259–262 [View Article][PubMed]
    [Google Scholar]
  9. Gurnett C. A., Felix R., Campbell K. P.( 1997). Extracellular interaction of the voltage-dependent Ca2+ channel α2δ and α1 subunits. J Biol Chem 272:18508–18512 [View Article][PubMed]
    [Google Scholar]
  10. Iida H., Yagawa Y., Anraku Y.( 1990). Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem 265:13391–13399[PubMed]
    [Google Scholar]
  11. Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y.( 1994). MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14:8259–8271[PubMed]
    [Google Scholar]
  12. Iida K., Tada T., Iida H.( 2004). Molecular cloning in yeast by in vivo homologueous recombination of the yeast putaive α 1 subunit of the voltage-gated calcium channel. FEBS Lett 576:291–296 [View Article][PubMed]
    [Google Scholar]
  13. Iida K., Teng J., Tada T., Saka A., Tamai M., Izumi-Nakaseko H., Adachi-Akahane S., Iida H.( 2007). Essential, completely conserved glycine residue in the domain III S2-S3 linker of voltage-gated calcium channel alpha1 subunits in yeast and mammals. J Biol Chem 282:25659–25667 [View Article][PubMed]
    [Google Scholar]
  14. Jan L. Y., Jan Y. N.( 1990). A superfamily of ion channels. Nature 345:672 [View Article][PubMed]
    [Google Scholar]
  15. Jarvis S. E., Zamponi G. W.( 2007). Trafficking and regulation of neuronal voltage-gated calcium channels. Curr Opin Cell Biol 19:474–482 [View Article][PubMed]
    [Google Scholar]
  16. Liu Y., Ishii S., Tokai M., Tsutsumi H., Ohki O., Akada R., Tanaka K., Tsuchiya E., Fukui S., Miyakawa T.( 1991). The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol Gen Genet 227:52–59 [View Article][PubMed]
    [Google Scholar]
  17. Locke E. G., Bonilla M., Liang L., Takita Y., Cunningham K. W.( 2000). A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol 20:6686–6694 [View Article][PubMed]
    [Google Scholar]
  18. Martin D. C., Kim H., Mackin N. A., Maldonado-Báez L., Evangelista C. C. Jr, Beaudry V. G., Dudgeon D. D., Naiman D. Q., Erdman S. E., Cunningham K. W.( 2011). New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J Biol Chem 286:10744–10754 [View Article][PubMed]
    [Google Scholar]
  19. Matsumoto T. K., Ellsmore A. J., Cessna S. G., Low P. S., Pardo J. M., Bressan R. A., Hasegawa P. M.( 2002). An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277:33075–33080 [View Article][PubMed]
    [Google Scholar]
  20. Miyakawa T., Mizunuma M.( 2007). Physiological roles of calcineurin in Saccharomyces cerevisiae with special emphasis on its roles in G2/M cell-cycle regulation. Biosci Biotechnol Biochem 71:633–645 [View Article][PubMed]
    [Google Scholar]
  21. Muller E. M., Locke E. G., Cunningham K. W.( 2001). Differential regulation of two Ca(2+) influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159:1527–1538[PubMed]
    [Google Scholar]
  22. Paidhungat M., Garrett S.( 1997). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17:6339–6347[PubMed]
    [Google Scholar]
  23. Peiter E., Fischer M., Sidaway K., Roberts S. K., Sanders D.( 2005). The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity. FEBS Lett 579:5697–5703 [View Article][PubMed]
    [Google Scholar]
  24. Popa C.-V., Dumitru I., Ruta L. L., Danet A. F., Farcasanu I. C.( 2010). Exogenous oxidative stress induces Ca2+ release in the yeast Saccharomyces cerevisiae. FEBS J 277:4027–4038 [View Article][PubMed]
    [Google Scholar]
  25. Spafford J. D., Zamponi G. W.( 2003). Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr Opin Neurobiol 13:308–314 [View Article][PubMed]
    [Google Scholar]
  26. Stie J., Fox D.( 2008). Calcineurin regulation in fungi and beyond. Eukaryot Cell 7:177–186 [View Article][PubMed]
    [Google Scholar]
  27. Sunami A., Glaaser I. W., Fozzard H. A.( 2001). Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics. Mol Pharmacol 59:684–691[PubMed]
    [Google Scholar]
  28. Tada T., Ohmori M., Iida H.( 2003). Molecular dissection of the hydrophobic segments H3 and H4 of the yeast Ca2+ channel component Mid1. J Biol Chem 278:9647–9654 [View Article][PubMed]
    [Google Scholar]
  29. Teng J., Goto R., Iida K., Kojima I., Iida H.( 2008). Ion-channel blocker sensitivity of voltage-gated calcium-channel homologue Cch1 in Saccharomyces cerevisiae. Microbiology 154:3775–3781 [View Article][PubMed]
    [Google Scholar]
  30. Viladevall L., Serrano R., Ruiz A., Domenech G., Giraldo J., Barceló A., Ariño J.( 2004). Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279:43614–43624 [View Article][PubMed]
    [Google Scholar]
  31. Wakamori M., Mikala G., Mori Y.( 1999). Auxiliary subunits operate as a molecular switch in determining gating behaviour of the unitary N-type Ca2+ channel current in Xenopus oocytes. J Physiol 517:659–672 [View Article][PubMed]
    [Google Scholar]
  32. Welsby P. J., Wang H., Wolfe J. T., Colbran R. J., Johnson M. L., Barrett P. Q.( 2003). A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J Neurosci 23:10116–10121[PubMed]
    [Google Scholar]
  33. Wolfe J. T., Wang H., Howard J., Garrison J. C., Barrett P. Q.( 2003). T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064030-0
Loading
/content/journal/micro/10.1099/mic.0.064030-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error