Skip to main content
Log in

Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation

International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We immunohistochemically examined the expression of matrix metalloproteinase (MMP)-2 and MMP-9 using venous thrombi developed by ligation of the inferior vena cava (IVC) in mice. Both MMP-2- and MMP-9- positive cells could be detected in the whole course of thrombus formation after IVC ligation. Morphometrically, their number was greatest 14 days after IVC ligation and thereafter, gradually decreased at 21 days. The number of MMP-9-positive cells was significantly higher than that of MMP-2-positive cells at 1 to 7 days. The average ratio of MMP-9 to MMP-2 (MMP-9/MMP-2 ratio) was >2.0 in all thrombus samples at 1–5 days. After 7 days, the MMP-9/MMP-2 ratio was less than 2.0. These observations implied that an MMP-9/MMP-2 ratio markedly exceeding 2.0 strongly indicates an age of 5 days or less. Furthermore, an MMP-9/MMP-2 ratio of <2.0 probably indicates an age of more than 7 days. The present study demonstrated that the immunohistochemical detection of intrathrombotic MMP-2 and MMP-9 was suitable to estimate the age of venous thrombi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) Analysis of the immunohistochemical localization of collagen type III and V for the time-estimation of human skin wounds. Int J Legal Med 105:329–332

    Article  CAS  PubMed  Google Scholar 

  2. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1992) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Legal Med 105:21–26

    Article  CAS  PubMed  Google Scholar 

  3. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    Article  CAS  PubMed  Google Scholar 

  4. Betz P, Nerlich A, Tübel J, Wiest I, Hausmann R (1997) Detection of cell death in human skin wounds of various ages by an in situ end labeling of nuclear DNA fragments. Int J Legal Med 110:240–243

    Article  CAS  PubMed  Google Scholar 

  5. Dressler J, Bachmann L, Koch R, Müller E (1999) Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 112:159–162

    Article  CAS  PubMed  Google Scholar 

  6. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325

    Article  PubMed  Google Scholar 

  7. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1alpha (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252

    Article  CAS  PubMed  Google Scholar 

  8. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414

    Article  CAS  PubMed  Google Scholar 

  9. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304

    Article  PubMed  Google Scholar 

  10. Hausmann R, Betz P (2000) The time course of the vascular response to human brain injury—an immunohistochemical study. Int J Legal Med 113:288–292

    Article  CAS  PubMed  Google Scholar 

  11. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114:338–342

    Article  CAS  PubMed  Google Scholar 

  12. Hausmann R, Riess R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113:70–75

    Article  CAS  PubMed  Google Scholar 

  13. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112:227–232

    Article  CAS  PubMed  Google Scholar 

  14. Dressler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121:365–375

    Article  CAS  PubMed  Google Scholar 

  15. Hausmann R, Seidl S, Betz P (2007) Hypoxic changes in Purkinje cells of the human cerebellum. Int J Legal Med 121:175–183

    Article  CAS  PubMed  Google Scholar 

  16. Hausmann R, Biermann T, Wiest I, Tübel J, Betz P (2004) Neuronal apoptosis following human brain injury. Int J Legal Med 118:32–36

    Article  CAS  PubMed  Google Scholar 

  17. Oehmichen M, Walter T, Meissner C, Friedrich HJ (2003) Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotrauma 20:87–103

    Article  PubMed  Google Scholar 

  18. Dressler J, Bachmann L, Koch R, Müller E (1999) Enhanced expression of selectins in human skin wounds. Int J Legal Med 112:39–44

    CAS  PubMed  Google Scholar 

  19. Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I (2009) Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int 186:22–28

    Article  PubMed  Google Scholar 

  20. Nosaka M, Ishida Y, Kimura A, Kondo T (2009) Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med 123:235–240

    Article  PubMed  Google Scholar 

  21. Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int 195:143–147

    Article  CAS  PubMed  Google Scholar 

  22. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632

    CAS  PubMed  Google Scholar 

  23. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863–868

    CAS  PubMed  Google Scholar 

  24. Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA (1994) Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 75:539–545

    CAS  PubMed  Google Scholar 

  25. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    CAS  PubMed  Google Scholar 

  26. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262

    CAS  PubMed  Google Scholar 

  27. Fontaine V, Jacob MP, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, Michel JB (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710

    CAS  PubMed  Google Scholar 

  28. Dewyer NA, Sood V, Lynch EM, Luke CE, Upchurch GR Jr, Wakefield TW, Kunkel S, Henke PK (2007) Plasmin inhibition increases MMP-9 activity and decreases vein wall stiffness during venous thrombosis resolution. J Surg Res 142:357–363

    Article  CAS  PubMed  Google Scholar 

  29. Deatrick KB, Eliason JL, Lynch EM, Moore AJ, Dewyer NA, Varma MR, Pearce CG, Upchurch GR, Wakefield TW, Henke PK (2005) Vein wall remodeling after deep vein thrombosis involves matrix metalloproteinases and late fibrosis in a mouse model. J Vasc Surg 42:140–148

    Article  PubMed  Google Scholar 

  30. Henke PK, Varma MR, Moaveni DK, Dewyer NA, Moore AJ, Lynch EM, Longo C, Deatrick CB, Kunkel SL, Upchurch GR, Wakefield TW (2007) Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thromb Haemost 98:1045–1055

    CAS  PubMed  Google Scholar 

  31. Henke PK, Pearce CG, Moaveni DM, Moore AJ, Lynch EM, Longo C, Varma M, Dewyer NA, Deatrick KB, Upchurch GR Jr, Wakefield TW, Hogaboam C, Kunkel SL (2006) Targeted deletion of CCR2 impairs deep vein thombosis resolution in a mouse model. J Immunol 177:3388–3397

    CAS  PubMed  Google Scholar 

  32. Samolov B, Steen B, Seregard S, van der Ploeg I, Montan P, Kvanta A (2005) Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res 80:159–166

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi T, Ishida Y, Mizunuma S, Kimura A, Kondo T (2009) Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123:7–13

    Article  PubMed  Google Scholar 

  34. An JL, Ishida Y, Kimura A, Kondo T (2010) Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 124:99–104

    Article  PubMed  Google Scholar 

  35. Nagai R, Suzuki T, Aizawa K, Miyamoto S, Amaki T, Kawai-Kowase K, Sekiguchi KI, Kurabayashi M (2001) Phenotypic modulation of vascular smooth muscle cells: dissection of transcriptional regulatory mechanisms. Ann NY Acad Sci 947:56–66

    Article  CAS  PubMed  Google Scholar 

  36. Takeya H, Gabazza EC, Aoki S, Ueno H, Suzuki K (2003) Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood 102:1693–1700

    Article  CAS  PubMed  Google Scholar 

  37. Furie B, Furie BC (2004) Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 10:171–178

    Article  CAS  PubMed  Google Scholar 

  38. Lambert MP, Sachais BS, Kowalska MA (2007) Chemokines and thrombogenicity. Thromb Haemost 97:722–729

    CAS  PubMed  Google Scholar 

  39. Wakefield TW, Myers DD, Henke PK (2008) Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 28:387–391

    Article  CAS  PubMed  Google Scholar 

  40. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  41. Sounni NE, Noel A (2005) Membrane type-matrix metalloproteinases and tumor progression. Biochimie 87:329–342

    Article  CAS  PubMed  Google Scholar 

  42. Lemaitre V, D’Armiento J (2006) Matrix metalloproteinases in development and disease. Birth Defects Res C Embryo Today 78:1–10

    Article  CAS  PubMed  Google Scholar 

  43. Vincenti MP, Brinckerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4:157–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Mariko Kawaguchi for her excellent assistance in the preparation of this manuscript. This study was financially supported in part by Grants-in-Aid for Scientific Research (A) and (C) from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosaka, M., Ishida, Y., Kimura, A. et al. Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 124, 439–444 (2010). https://doi.org/10.1007/s00414-010-0484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0484-y

Keywords

Navigation