Skip to main content
Log in

Immunohistochemical detection of uPA, tPA, and PAI-1 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation

International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We immunohistochemically examined the expression of urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasminogen-activator inhibitor type-1 (PAI-1) using venous thrombi developed by ligation of the inferior vena cava (IVC) in mice. The uPA-, tPA- and PAI-1-positive cells could be firstly detected 5, 7, and 3 days, respectively, after IVC ligation. Morphometrically, the number of PAI-1-positive cells was significantly higher than those of uPA- and tPA-positive cells at later than 7 days. In all of the thrombus samples aged 10–21 days, the uPA/PAI-1 and tPA/PAI-1 ratios were >0.1 and >0.2, respectively. In contrast, all of the thrombus samples aged 1–7 days had uPA/PAI-1 of <0.1 and tPA/PAI-1 ratios of <0.2. These findings implied that uPA/PAI-1 of >0.1 and tPA/PAI-1 of >0.2 indicated an age of 10 days or more. Moreover, in four of five samples aged 10 days, uPA/PAI-1 ratios were <0.3, and the remaining one had uPA/PAI-1 of 0.32. All thrombi aged 14–21 days showed values greater than 0.3. Thus, uPA/PAI-1 ratios, markedly exceeding 0.3, strongly indicated an age of more than 14 days. The present study demonstrated that the immunohistochemical detection of uPA, tPA, and PAI-1 was suitable to estimate the age of venous thrombi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) Analysis of the immunohistochemical localization of collagen type III and V for the time-estimation of human skin wounds. Int J Legal Med 105:329–332

    Article  PubMed  CAS  Google Scholar 

  2. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1992) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Legal Med 105:21–26

    Article  PubMed  CAS  Google Scholar 

  3. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    Article  PubMed  CAS  Google Scholar 

  4. Betz P, Nerlich A, Tübel J, Wiest I, Hausmann R (1997) Detection of cell death in human skin wounds of various ages by an in situ end labeling of nuclear DNA fragments. Int J Legal Med 110:240–243

    Article  PubMed  CAS  Google Scholar 

  5. Dressler J, Bachmann L, Koch R, Müller E (1999) Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 112:159–162

    Article  PubMed  CAS  Google Scholar 

  6. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325

    Article  PubMed  Google Scholar 

  7. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1alpha (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252

    Article  PubMed  CAS  Google Scholar 

  8. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414

    Article  PubMed  CAS  Google Scholar 

  9. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304

    Article  PubMed  Google Scholar 

  10. Hausmann R, Betz P (2000) The time course of the vascular response to human brain injury—an immunohistochemical study. Int J Legal Med 113:288–292

    Article  PubMed  CAS  Google Scholar 

  11. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114:338–342

    Article  PubMed  CAS  Google Scholar 

  12. Hausmann R, Riess R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113:70–75

    Article  PubMed  CAS  Google Scholar 

  13. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112:227–232

    Article  PubMed  CAS  Google Scholar 

  14. Dressler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121:365–375

    Article  PubMed  CAS  Google Scholar 

  15. Hausmann R, Seidl S, Betz P (2007) Hypoxic changes in Purkinje cells of the human cerebellum. Int J Legal Med 121:175–183

    Article  PubMed  CAS  Google Scholar 

  16. Hausmann R, Biermann T, Wiest I, Tübel J, Betz P (2004) Neuronal apoptosis following human brain injury. Int J Legal Med 118:32–36

    Article  PubMed  CAS  Google Scholar 

  17. Oehmichen M, Walter T, Meissner C, Friedrich HJ (2003) Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotrauma 20:87–103

    Article  PubMed  Google Scholar 

  18. Dressler J, Bachmann L, Koch R, Müller E (1999) Enhanced expression of selectins in human skin wounds. Int J Legal Med 112:39–44

    PubMed  CAS  Google Scholar 

  19. Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124:523–536

    Article  PubMed  Google Scholar 

  20. An JL, Ishida Y, Kimura A, Kondo T (2011) Immunohistochemical examination of intracerebral aquaporin-4 expression and its application for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 125:59–65

    Article  PubMed  Google Scholar 

  21. An JL, Ishida Y, Kimura A, Kondo T (2010) Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 124:99–104

    Article  PubMed  Google Scholar 

  22. Fracasso T, Pfeiffer H, Michaud K, Köhler H, Sauerland C, Schmeling A (2011) Immunohistochemical expression of fibronectin and C5b-9 in the myocardium in cases of carbon monoxide poisoning. Int J Legal Med 125:377–384

    Article  PubMed  Google Scholar 

  23. Yoshida C, Ishikawa T, Michiue T, Quan L, Maeda H (2011) Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia. Int J Legal Med 125:11–20

    Article  PubMed  Google Scholar 

  24. Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I (2009) Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int 186:22–28

    Article  PubMed  Google Scholar 

  25. Nosaka M, Ishida Y, Kimura A, Kondo T (2009) Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med 123:235–240

    Article  PubMed  Google Scholar 

  26. Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int 195:143–147

    Article  PubMed  CAS  Google Scholar 

  27. Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 124:439–444

    Article  PubMed  Google Scholar 

  28. Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, Smith A (2003) Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation 107:869–875

    Article  PubMed  CAS  Google Scholar 

  29. Humphries J, Gossage JA, Modarai B, Burnand KG, Sisson TH, Murdoch C, Smith A (2009) Monocyte urokinase-type plasminogen activator up-regulation reduces thrombus size in a model of venous thrombosis. J Vasc Surg 50:1127–1134

    Article  PubMed  Google Scholar 

  30. Lund LR, Green KA, Stoop AA, Ploug M, Almholt K, Lilla J, Nielsen BS, Christensen IJ, Craik CS, Werb Z, Dano K, Romer J (2006) Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice. EMBO J 25:2686–2697

    Article  PubMed  CAS  Google Scholar 

  31. Jankun J, Aleem AM, Struniawski R, Lysiak-Szydlowska W, Selman SH, Skrzypczak-Jankun E (2009) Accelerated thrombus lysis in the blood of plasminogen activator inhibitor deficient mice is inhibited by PAI-1 with a very long half-life. Pharmacol Rep 61:673–680

    PubMed  CAS  Google Scholar 

  32. Nagai R, Suzuki T, Aizawa K, Miyamoto S, Amaki T, Kawai-Kowase K, Sekiguchi KI, Kurabayashi M (2001) Phenotypic modulation of vascular smooth muscle cells: dissection of transcriptional regulatory mechanisms. Ann N Y Acad Sci 947:56–66

    Article  PubMed  CAS  Google Scholar 

  33. Takeya H, Gabazza EC, Aoki S, Ueno H, Suzuki K (2003) Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood 102:1693–1700

    Article  PubMed  CAS  Google Scholar 

  34. Furie B, Furie BC (2004) Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 10:171–178

    Article  PubMed  CAS  Google Scholar 

  35. Lambert MP, Sachais BS, Kowalska MA (2007) Chemokines and thrombogenicity. Thromb Haemost 97:722–729

    PubMed  CAS  Google Scholar 

  36. Wakefield TW, Myers DD, Henke PK (2008) Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 28:387–391

    Article  PubMed  CAS  Google Scholar 

  37. Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Inui M, Mukaida N, Kondo T (2011) Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest 121:2911–2920

    Article  PubMed  CAS  Google Scholar 

  38. Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS, Skriver L (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266

    Article  PubMed  CAS  Google Scholar 

  39. Vassalli JD, Sappino AP, Belin D (1991) The plasminogen activator/plasmin system. J Clin Invest 88:1067–1072

    Article  PubMed  CAS  Google Scholar 

  40. Kohler HP, Grant PJ (2000) Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 342:1792–1801

    Article  PubMed  CAS  Google Scholar 

  41. Leibovich SJ, Wiseman DM (1988) Macrophages, wound repair and angiogenesis. Prog Clin Biol Res 266:131–145

    PubMed  CAS  Google Scholar 

  42. Lijnen HR (2001) Elements of the fibrinolytic system. Ann N Y Acad Sci 936:226–236

    Article  PubMed  CAS  Google Scholar 

  43. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV (1999) Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 19:2801–2806

    Article  PubMed  CAS  Google Scholar 

  44. Bugge TH, Flick MJ, Danton MJ, Daugherty CC, Romer J, Dano K, Carmeliet P, Collen D, Degen JL (1996) Urokinase-type plasminogen activator is effective in fibrin clearance in the absence of its receptor or tissue-type plasminogen activator. Proc Natl Acad Sci USA 93:5899–5904

    Article  PubMed  CAS  Google Scholar 

  45. Ploplis VA, French EL, Carmeliet P, Collen D, Plow EF (1998) Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 91:2005–2009

    PubMed  CAS  Google Scholar 

  46. Schulman S, Wiman B (1996) The significance of hypofibrinolysis for the risk of recurrence of venous thromboembolism. Duration of Anticoagulation (DURAC) Trial Study Group. Thromb Haemost 75:607–611

    PubMed  CAS  Google Scholar 

  47. Crowther MA, Roberts J, Roberts R, Johnston M, Stevens P, Skingley P, Patrassi GM, Sartori MT, Hirsh J, Prandoni P, Weitz JI, Gent M, Ginsberg JS (2001) Fibrinolytic variables in patients with recurrent venous thrombosis: a prospective cohort study. Thromb Haemost 85:390–394

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Mariko Kawaguchi for her excellent assistance in the preparation of this manuscript. This study was financially supported in part by Grants-in-Aid for Scientific Research (A) and (C) from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosaka, M., Ishida, Y., Kuninaka, Y. et al. Immunohistochemical detection of uPA, tPA, and PAI-1 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 126, 421–425 (2012). https://doi.org/10.1007/s00414-012-0680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0680-z

Keywords

Navigation