Skip to main content
Log in

Autophagy in skin wounds: a novel marker for vital reactions

International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Detection of vitality of mechanical wounds in human cadavers is one of the important issues in forensic medicine. In order to explore novel markers for vitality of acute mechanical wounds, we investigated autophagy in mouse and human skin wounds. Western blotting analysis of mouse skin wounds showed marked reduction of LC3-II and reciprocal increase of p62 in wound samples with the postinfliction intervals of ≥0.5 h, compared with the uninjured skin tissues. These observations indicated that autophagy level was reduced in the wound sites. In postmortem wound samples, there were no remarkable changes in LC3-II and p62 levels. Furthermore, the postmortem intervals of 1–4 days have no significant effects on the changes of LC3-II and p62 in the antemortem skin wounds. Like murine wound samples, these alterations of LC3-II and p62 could be detected in human skin wound samples. Collectively, our study using animal and human samples implied that the detection of autophagy-related molecules such as LC3-II and p62 might be useful for forensic practice as markers of wound vitality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Grellner W, Madea B (2007) Demands on scientific studies: vitality of wounds and wound age estimation. Forensic Sci Int 165:150–154

    Article  PubMed  Google Scholar 

  2. Bonelli A, Bacci S, Vannelli B, Norelli A (2003) Immunohistochemical localization of mast cells as a tool for the discrimination of vital and postmortem lesions. Int J Legal Med 117:14–18

    Article  CAS  PubMed  Google Scholar 

  3. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    Article  CAS  PubMed  Google Scholar 

  4. Oehmichen M (2004) Vitality and time course of wounds. Forensic Sci Int 144:221–231

    Article  CAS  PubMed  Google Scholar 

  5. Gauchotte G, Wissler MP, Casse JM, Pujo J, Minetti C, Gisquet H, Vigouroux C, Plenat F, Vignaud JM, Martrille L (2013) FVIIIra, CD15, and tryptase performance in the diagnosis of skin stab wound vitality in forensic pathology. Int J Legal Med 127:957–965

    Article  PubMed  Google Scholar 

  6. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  7. Yang M, Liu J, Shao J, Qin Y, Ji Q, Zhang X, Du J (2014) Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerates tumor development by promoting M2 polarization. Mol Cancer 13:43

    Article  PubMed Central  PubMed  Google Scholar 

  8. Oehmichen M, Gronki T, Meissner C, Anlauf M, Schwark T (2009) Mast cell reactivity at the margin of human skin wounds: an early cell marker of wound survival? Forensic Sci Int 191:1–5

    Article  CAS  PubMed  Google Scholar 

  9. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414

    Article  CAS  PubMed  Google Scholar 

  10. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304

    Article  PubMed  Google Scholar 

  11. Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325

    Article  PubMed  Google Scholar 

  13. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205:435–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  16. Kimura A, Ishida Y, Wada T, Hisaoka T, Morikawa Y, Sugaya T, Mukaida N, Kondo T (2010) The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation. Am J Pathol 176:40–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kimura A, Ishida Y, Inagaki M, Nakamura Y, Sanke T, Mukaida N, Kondo T (2012) Interferon-gamma is protective in cisplatin-induced renal injury by enhancing autophagic flux. Kidney Int 82:1093–1104

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, Niimura F, Matsusaka T, Fujita N, Yoshimori T, Isaka Y, Rakugi H (2012) Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 180:517–525

    Article  CAS  PubMed  Google Scholar 

  19. Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N, Kondo T (2012) Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 122:711–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hernandez-Cueto C, Vieira DN, Girela E, Marques E, Calvo MD, Villalobos M, Oliveira F, Villanueva E (1994) Prostaglandin F2a (PGF2a): an inadequate marker of the vitality of wounds? Int J Legal Med 106:312–314

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez-Cueto C, Lorente JA, Pedal I, Villanueva E, Zimmer G, Girela E, Miltner E (1993) Cathepsin D as a vitality marker in human skin wounds. Int J Legal Med 106:145–147

    Article  CAS  PubMed  Google Scholar 

  22. Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Legal Med 111:251–255

    Article  CAS  PubMed  Google Scholar 

  23. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  24. Wada Y, Sun-Wada GH, Kawamura N, Aoyama M (2014) Role of autophagy in embryogenesis. Curr Opin Genet Dev 27:60–66

    Article  CAS  PubMed  Google Scholar 

  25. Avalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF (2014) Tumor suppression and promotion by autophagy. Biomed Res Int 2014:603980

    Article  PubMed Central  PubMed  Google Scholar 

  26. Arroyo DS, Gaviglio EA, Peralta RJM, Bussi C, Rodriguez-Galan MC, Iribarren P (2014) Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 18:55–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  CAS  PubMed  Google Scholar 

  28. Tuloup-Minguez V, Hamai A, Greffard A, Nicolas V, Codogno P, Botti J (2013) Autophagy modulates cell migration and beta1 integrin membrane recycling. Cell Cycle 12:3317–3328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Joosten LA, Netea MG, Dinarello CA (2013) Interleukin-1β in innate inflammation, autophagy and immunity. Semin Immunol 25(6):416–424

    Article  CAS  PubMed  Google Scholar 

  30. Chang CP, Su YC, Lee PH, Lei HY (2013) Targeting NFκB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9:619–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhang X, Jin JY, Wu J, Qin X, Streilein R, Hall RP, Zhang JY (2014) RNA-Seq and ChIP-Seq reveal SQSTM1/p62 as a key mediator of JunB suppression of NF-κB-dependent Inflammation. J Invest Dermatol. doi:10.1038/jid.2014.519

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by Grants in-Aid for Scientific Research (A) and (B), and Exploratory Research from the Ministry of Education, Science, Sports and Culture of Japan. We sincerely thank Ms. Mariko Kawaguchi for her excellent assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, A., Ishida, Y., Nosaka, M. et al. Autophagy in skin wounds: a novel marker for vital reactions. Int J Legal Med 129, 537–541 (2015). https://doi.org/10.1007/s00414-015-1168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1168-4

Keywords

Navigation