Skip to main content
Log in

Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin

International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic practices, it is often difficult to determine wound vitality in compression marks of the neck with naked eyes. AQP1 and AQP3 are the major water channels associated with skin. Thus, we immunohistochemically examined the expression of AQP1 and AQP3 in neck skin samples to discuss their forensic applicability to determination of the wound vitality. Skin samples were obtained from 56 neck compression cases (hanging, 35 cases; strangulation, 21 cases). The intact skin from the same individual was taken as a control. Although AQP1 was immnunostained in dermal capillaries in both the neck compression marks and intact skin samples, there was no significant difference in the magnitude of AQP1 expression between both groups. On the contrary, AQP3-positive signals could be faintly detected in uninjured skin samples, and the positive signals seemed more intense in the keratinocytes in compression regions. Morphometrical analyses revealed that the ratio of AQP3-expressed keratinocytes was significantly enhanced in neck compression regions, compared with control groups. From the viewpoints of forensic pathology, immunohistochemical detection of AQP3 in the neck skin can be considered a valuable marker to diagnose the trace of antemortem compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Adelson L (1974) Homicide by cervical compression and by drowning “Asphyxial Deaths”. In: The Pathology of Homicide, 1st edn. Charles C Thomas, Springfield, pp 521–575

  2. Vij K (2001) Asphyxial deaths. In: Textbook of forensic medicine, principles and practice, 1st edn. B.I. Churchill Livingstone, New Delhi, pp 216–295

  3. Di Maio DJ, Di Maio Vincent JM (1989) Asphyxia. In: Forensic pathology. Elsevier, New York, pp 207–250

    Google Scholar 

  4. Gordon I, Shaphiro HA, Berson SD (1988) Death usually initiated by hypoxic hyposia or anoxic anoxia. In: Forensic medicine—a guide to principles. 3rd edn. Churchill Livingstone, Edinburgh, pp 95–127

  5. Advenier AS, de la Grandmaison GL (2014) Traumatic rupture of deep neck structures in hanging: two case reports. Am J Forensic Med Pathol 35(3):189–192. https://doi.org/10.1097/PAF.0000000000000114

    Article  PubMed  Google Scholar 

  6. Verkman AS, Matthay MA, Song Y (2000) Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol 278(5):L867–L879. https://doi.org/10.1152/ajplung.2000.278.5.L867

    Article  PubMed  CAS  Google Scholar 

  7. King LS, Agre P (2001) Man is not a rodent: aquaporins in the airways. Am J Respir Cell Mol Biol 24(3):221–223. https://doi.org/10.1165/ajrcmb.24.3.f202

    Article  PubMed  CAS  Google Scholar 

  8. Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200(6):617–627. https://doi.org/10.1046/j.1469-7580.2002.00058.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118(15):3225–3232. https://doi.org/10.1242/jcs.02519

    Article  PubMed  CAS  Google Scholar 

  10. Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13. https://doi.org/10.1513/pats.200510-109JH

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sougrat R, Morand M, Gondran C, Barre P, Gobin R, Bonte F, Dumas M, Verbavatz JM (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J Invest Dermatol 118(4):678–685. https://doi.org/10.1046/j.1523-1747.2002.01710.x

    Article  PubMed  CAS  Google Scholar 

  12. Hara-Chikuma M, Verkman AS (2005) Aquaporin-3 functions as a glycerol transporter in mammalian skin. Biol Cell 97(7):479–486. https://doi.org/10.1042/BC20040104

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi T, Ishida Y, Mizunuma S, Kimura A, Kondo T (2009) Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123(1):7–13. https://doi.org/10.1007/s00414-008-0235-5

    Article  PubMed  Google Scholar 

  14. An JL, Ishida Y, Kimura A, Kondo T (2010) Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 124(2):99–104. https://doi.org/10.1007/s00414-009-0375-2

    Article  PubMed  Google Scholar 

  15. An JL, Ishida Y, Kimura A, Kondo T (2011) Immunohistochemical examination of intracerebral aquaporin-4 expression and its application for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 125(1):59–65. https://doi.org/10.1007/s00414-010-0523-8

    Article  PubMed  Google Scholar 

  16. Opdal SH, Vege A, Stray-Pedersen A, Rognum TO (2010) Aquaporin-4 gene variation and sudden infant death syndrome. Pediatr Res 68(1):48–51. https://doi.org/10.1203/PDR.0b013e3181df4e7c

    Article  PubMed  CAS  Google Scholar 

  17. Studer J, Bartsch C, Haas C (2014) Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS). Pediatr Res 76(1):41–45. https://doi.org/10.1038/pr.2014.59

    Article  PubMed  CAS  Google Scholar 

  18. Nakahigashi K, Kabashima K, Ikoma A, Verkman AS, Miyachi Y, Hara-Chikuma M (2011) Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. J Invest Dermatol 131(4):865–873. https://doi.org/10.1038/jid.2010.395

    Article  PubMed  CAS  Google Scholar 

  19. Voss KE, Bollag RJ, Fussell N, By C, Sheehan DJ, Bollag WB (2011) Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders. Arch Dermatol Res 303(8):591–600. https://doi.org/10.1007/s00403-011-1136-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kubo H, Hayashi T, Ago K, Ago M, Kanekura T, Ogata M (2014) Forensic diagnosis of ante- and postmortem burn based on aquaporin-3 gene expression in the skin. Leg Med (Tokyo) 16(3):128–134. https://doi.org/10.1016/j.legalmed.2014.01.008

    Article  CAS  Google Scholar 

  21. Mobasheri A, Marples D (2004) Expression of the AQP-water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286(3):C529–C537. https://doi.org/10.1152/ajpcell.00408.2003

    Article  PubMed  CAS  Google Scholar 

  22. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434(7034):786–792. https://doi.org/10.1038/nature03460

    Article  PubMed  CAS  Google Scholar 

  23. Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128(9):2145–2151. https://doi.org/10.1038/jid.2008.70

  24. Boury-Jamot M, Daraspe J, Bonte F, Perrier E, Schnebert S, Dumas M, Verbavatz JM (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol :205–217. https://doi.org/10.1007/978-3-540-79885-9_10

  25. Hara-Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 86(2):221–231. https://doi.org/10.1007/s00109-007-0272-4

    Article  CAS  Google Scholar 

  26. Hara-Chikuma M, Takahashi K, Chikuma S, Verkman AS, Miyachi Y (2009) The expression of differentiation markers in aquaporin-3 deficient epidermis. Arch Dermatol Res 301(3):245–252. https://doi.org/10.1007/s00403-009-0927-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB (2011) Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys 508(2):138–143. https://doi.org/10.1016/j.abb.2011.01.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203(1-3):93–98. https://doi.org/10.1016/j.forsciint.2010.07.004

    Article  PubMed  CAS  Google Scholar 

  29. Turillazzi E, Vacchiano G, Luna-Maldonado A, Neri M, Pomara C, Rabozzi R, Riezzo I, Fineschi V (2010) Tryptase, CD15 and IL-15 as reliable markers for the determination of soft and hard ligature marks vitality. Histol Histopathol 25(12):1539–1546. https://doi.org/10.14670/HH-25.1539

    Article  PubMed  Google Scholar 

  30. Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70(1):301–327. https://doi.org/10.1146/annurev.physiol.70.113006.100452

    Article  PubMed  CAS  Google Scholar 

  31. Verkman AS (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212(11):1707–1715. https://doi.org/10.1242/jeb.024125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456(4):693–700. https://doi.org/10.1007/s00424-007-0357-5

    Article  PubMed  CAS  Google Scholar 

  33. Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20(11):1892–1894. https://doi.org/10.1096/fj.06-5930fje

    Article  PubMed  CAS  Google Scholar 

  34. Hara-Chikuma M, Verkman AS (2006) Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 17(1):39–45. https://doi.org/10.1681/ASN.2005080846

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi S, Takahashi N, Kurata N, Yamaguchi A, Matsui H, Kato S, Takeuchi K (2009) Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair. Biochem Biophys Res Commun 386(3):483–487. https://doi.org/10.1016/j.bbrc.2009.06.067

    Article  PubMed  CAS  Google Scholar 

  36. Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269(34):21845–21849

    PubMed  CAS  Google Scholar 

  37. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91(14):6269–6273. https://doi.org/10.1073/pnas.91.14.6269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91(23):10997–11001. https://doi.org/10.1073/pnas.91.23.10997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97(8):4386–4391. https://doi.org/10.1073/pnas.080499597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277(19):17147–17153. https://doi.org/10.1074/jbc.M200925200

    Article  PubMed  CAS  Google Scholar 

  41. Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108(Pt 9):2993–3002

    PubMed  CAS  Google Scholar 

  42. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47(10):1275–1286. https://doi.org/10.1177/002215549904701007

    Article  PubMed  CAS  Google Scholar 

  43. Sougrat R, Morand M, Gondran C, Bonte F, Dumas M, Verbavatz JM (2000) Functional expression of AQP3 in human skin epidermis and keratinocyte cell cultures. In: Hohmann S, Nielsen S (eds) Molecular biology and physiology of water and solute transport. Kluwer Academic/Plenum Publishers, New York, pp 179–183. https://doi.org/10.1007/978-1-4615-1203-5_25

    Chapter  Google Scholar 

  44. Imakado S, Bickenbach JR, Bundman DS, Rothnagel JA, Attar PS, Wang XJ, Walczak VR, Wisniewski S, Pote J, Gordon JS et al (1995) Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev 9(3):317–329. https://doi.org/10.1101/gad.9.3.317

    Article  PubMed  CAS  Google Scholar 

  45. Proksch E, Folster-Holst R, Jensen JM (2006) Skin barrier function, epidermal proliferation and differentiation in eczema. J Dermatol Sci 43(3):159–169. https://doi.org/10.1016/j.jdermsci.2006.06.003

    Article  PubMed  CAS  Google Scholar 

  46. Verdier-Sevrain S, Bonte F (2007) Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 6(2):75–82. https://doi.org/10.1111/j.1473-2165.2007.00300.x

    Article  PubMed  Google Scholar 

  47. Cao C, Wan S, Jiang Q, Amaral A, Lu S, Hu G, Bi Z, Kouttab N, Chu W, Wan Y (2008) All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J Cell Physiol 215(2):506–516. https://doi.org/10.1002/jcp.21336

    Article  PubMed  CAS  Google Scholar 

  48. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118(6):320–325. https://doi.org/10.1007/s00414-004-0468-x

    Article  PubMed  Google Scholar 

  49. Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116(5):267–272. https://doi.org/10.1007/s00414-002-0322-y

    Article  PubMed  CAS  Google Scholar 

  50. Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116(2):87–91. https://doi.org/10.1007/s004140100260

    Article  PubMed  CAS  Google Scholar 

  51. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112(4):249–252. https://doi.org/10.1007/s004140050244

    Article  PubMed  CAS  Google Scholar 

  52. An JL, Ishida Y, Kimura A, Tsokos M, Kondo T (2009) Immunohistochemical detection of CCR2 and CX3CR1 in sepsis-induced lung injury. Forensic Sci Int 192(1-3):e21–e25. https://doi.org/10.1016/j.forsciint.2009.08.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Mariko Kawaguchi for her excellent assistance in the preparation of this manuscript.

Funding

This study was financially supported in part by Grants-in-Aids for Scientific Research (A, 25253055), (B, 15H04798) and (C, 17K09274) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Electronic supplementary material

ESM 1

(PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, Y., Kuninaka, Y., Nosaka, M. et al. Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin. Int J Legal Med 132, 1375–1380 (2018). https://doi.org/10.1007/s00414-018-1780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1780-1

Keywords

Navigation