Skip to main content
Log in

Variation in leaf and soil δ15N in diverse tree species in a lowland dipterocarp rainforest, Malaysia

Trees Aims and scope Submit manuscript

Abstract

Key message

Large variations in leaf δ 15 N in Bornean tropical rainforest trees may indicate that various tropical species have species-specific strategy for nitrogen uptake under low soil nutrient conditions, including root symbiotic microorganisms such as ectomycorrhiza.

Abstract

Lowland tropical rainforests in Southeast Asia are characterized by high species diversity despite limited soil nutrient conditions. The plant nitrogen isotope ratio (δ15N) reflects plant uptake of soil nitrogen. We analyzed δ15N values and nitrogen content (N %) in leaves and roots of 108 woody species with different types of symbiotic microorganisms, of different life forms (emergent, canopy, sub-canopy, understory, and canopy gap species), and from different families in a Bornean lowland dipterocarp forest to gain more insight into the diversity of nitrogen uptake strategy in the rhizosphere. Leaf δ15N values in the species studied varied largely from −7.2 to 5.0 ‰, which is comparable to the values of known Asian trees including temperate, sub-tropical, and tropical mountain forests. Leaf δ15N also varied significantly among both life forms and families, though the phylogenetically independent contrast (PIC) relationships were not statistically significant among life form, family, and symbiotic types. Some families showed specific leaf δ15N values; Dipterocarpaceae, the dominant family in the canopy layer with symbiotic ectomycorrhiza in Southeast Asia, had small intraspecific variation and higher leaf δ15N values (0.03 ‰) compared with species exhibiting arbuscular mycorrhiza, whereas several families such as Burseraceae, Euphorbiaceae, and Myrtaceae showed large interspecific variation in leaf δ15N (e.g., from −7.2 to 5.0 ‰ in Euphorbiaceae). These variations suggest that tropical species may have family- or species-specific strategy, such as root symbiotic microorganisms, for nitrogen uptake under low-nutrient conditions in tropical rainforests in Southeast Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alexander IJ, Högberg P (1986) Ectomycorrhizas of tropical angiosperm trees. New Phytol 102:541–549

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge, p 200

    Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendell C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031

    Article  Google Scholar 

  • Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Ashton PS (1964) Ecological studies in the mixed dipterocarp forests of Brunei State. Clarendon Press, Oxford, p 75

    Google Scholar 

  • Ashton PS (2014) On the forests of Tropical Asia: lest the memory fade. Kew Publishing, UK, p 670

    Google Scholar 

  • Brearley FQ (2012) Ectomycorrhizal associations of the Dipterocarpaceae. Biotrop 44:637–648

    Article  Google Scholar 

  • Brearley FQ, Press MC, Scholes JD (2003) Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytol 160:101–110

    Article  CAS  Google Scholar 

  • Brunig EF (1974) Ecological studies in the kerangas forests of Sarawak and Brunei. Borneo Literature Bureau, Kuching, p 237

    Google Scholar 

  • Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24:601–614

    Article  CAS  PubMed  Google Scholar 

  • Casciotti KL, Sigman DM, Hasting GM, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of leaf nitrogen isotopes and their relationships with climate, mycorrhizal fungi, leaf nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  CAS  PubMed  Google Scholar 

  • Davies SJ, Palmiotto PA, Ashton PS, Lee HS, Lafrankie JV (1998) Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. J Ecol 86:662–673

    Article  Google Scholar 

  • de Kroon H, Visser EJW (2003) Root ecology. Springer-Verlag, Berlin, p 394

    Book  Google Scholar 

  • Domenach AM, Kurdali F, Bardin R (1989) Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant Soil 118:51–59

    Article  CAS  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  CAS  PubMed  Google Scholar 

  • Fang YT, Koba K, Yho M, Makabe A, Liu XY (2013) Patterns of foliar δ15N and their control in Eastern Asian forests. Ecol Res 28:735–748

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fischer RC, Wanek W, Richter A, Mayer V (2003) Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. J Ecol 91:126–134

    Article  Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Article  Google Scholar 

  • Halling RE (2001) Ectomycorrhizae: co-evolution, significance, and biogeography. Ann Missouri Bot Gard 88:5–13

    Article  Google Scholar 

  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95:355–371

    Article  CAS  Google Scholar 

  • Holmes RM, McClelland JW, Sigman DM, Fry B, Peterson BJ (1998) Measuring 15N-NH4 + in marine, estuarine and fresh waters: an adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Mar Chem 60:235–243

    Article  CAS  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci USA 104:8902–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyodo F, Kusaka S, Wardle DA, Nilsson MC (2013) Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 367:111–119

    Article  CAS  Google Scholar 

  • Inoue Y, Kenzo T, Tanaka-Oda A, Yoneyama A, Ichie T (2015) Leaf water use in heterobaric and homobaric leafed canopy tree species in a Malaysian tropical rain forest. Photosynthetica 53:177–186

    Article  CAS  Google Scholar 

  • Itioka T (2005) Diversity of anti-herbivore defenses in Macaranga. In: Roubik DW, Sakai S, Karim AAH (eds) Pollination ecology and the rain forest: Sarawak studies. Springer, New York, pp 158–171

    Chapter  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, New York, p 190

    Google Scholar 

  • Kenzo T, Ichie T, Watanabe Y, Hiromi T (2007) Ecological distribution of homobaric and heterobaric leaves in tree species of Malaysian lowland tropical rainforest. Am J Bot 94:764–775

    Article  PubMed  Google Scholar 

  • Kenzo T, Furutani R, Hattori D, Tanaka S, Sakurai K, Ninomiya I, Kendawang JJ (2015a) Aboveground and belowground biomass in logged-over tropical rain forests under different soil conditions in Borneo. J For Res 20:197–205

    Article  CAS  Google Scholar 

  • Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanaka-Oda A, Ichie T (2015b) Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 177:191–202

    Article  PubMed  Google Scholar 

  • Kitayama K, Iwamoto K (2001) Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229:203–212

    Article  CAS  Google Scholar 

  • Koba K, Inagaki K, Sasaki Y, Takebayashi Y, Yoh M (2010) In: Ohkouchi N, Tayasu I, Koba K (eds) Earth. Life and Isotopes. Kyoto University Press, Kyoto, p 430

    Google Scholar 

  • Kume T, Tanaka N, Kuraji K, Komatsu H, Yoshifuji N, Saitoh TM, Suzuki M, Kumagai TO (2011) Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agric For Meteor 151:1183–1192

    Article  Google Scholar 

  • Lee HS, Davies SJ, Lafrankie JV, Tan S, Yamakura T, Itoh A, Ohkubo T, Ashton PS (2002) Floristic and structural diversity of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J Trop For Sci 14:379–400

    Google Scholar 

  • Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. CRC Press, New York, pp 25–38

    Google Scholar 

  • Mayor JR, Schuur EAG, Mack MC, Hollingsworth TN, Bååth E (2012) Nitrogen isotope patterns in Alaskan black spruce reflect organic nitrogen sources and the activity of ectomycorrhizal fungi. Ecosystems 15:819–831

    Article  CAS  Google Scholar 

  • Mayor J, Bahram M, Henkel T, Buegger F, Pritsch K, Tedersoo L (2015) Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms. Ecol Lett 18:96–107

    Article  PubMed  Google Scholar 

  • McGuire KL, Henkel TW, Granzow de la Cerda I, Villa G, Edmund F, Andrew C (2008) Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species. Mycorrhiza 18:217–222

    Article  CAS  PubMed  Google Scholar 

  • McIlvin MR, Casciotti KL (2011) Technical updates to the bacterial method for nitrate isotopic analyses. Anal Chem 83:1850–1856

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Wagai R, Aiba SI, Nilus R (2015) Variation in the aboveground stand structure and fine-root biomass of Bornean heath (kerangas) forests in relation to altitude and soil nitrogen availability. Trees (in press). doi:10.1007/s00468-015-1210-7

  • Murach D, Ruhiyat D, Iskandar E, Schulte A (1998) Fine root inventories in diptercarp forests and plantations in East Kalimantan, Indonesia. In: Schulte A, Ruhiyat D (eds) Soils of tropical forest ecosystems: characteristics, ecology and management. Springer, Berlin, pp 186–191

    Chapter  Google Scholar 

  • Nakagawa M, Tanaka K, Nakashizuka T, Ohkubo T, Kato T, Maeda Seng LH et al (2000) Impact of severe drought associated with the 1997–1998 El Nino in a tropical forest in Sarawak. J Trop Ecol 16:355–367

    Article  Google Scholar 

  • Olsson PA, van Aarle IM, Allaway WG, Ashford AE, Rouhier H (2002) Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ometto JP, Ehleringer JR, Domingues TF, Berry JA, Ishida FY, Mazzi E, Higuchi N, Flanagan LB, Nardoto GB, Martinelli LA (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251–274

    Article  CAS  Google Scholar 

  • Ong CS, Juan JC, Yule CM (2015) Litterfall production and chemistry of Koompassia malaccensis and Shorea uliginosa in a tropical peat swamp forest: plant nutrient regulation and climate relationships. Trees 29:527–537

    Article  CAS  Google Scholar 

  • Palmiotto PA, Davies SJ, Vogt KA, Ashton MS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

    Article  Google Scholar 

  • Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B et al (2006) Regional Assessment of N Saturation using foliar and root δ15N. Biogeochemistry 80:143–171

    Article  Google Scholar 

  • Robinson D (2001) δ15N as integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Roggy JC, Prévost MF, Garbaye J, Domenach AM (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22

    Article  Google Scholar 

  • Roggy JC, Prevost MF, Gourbiere F, Casabianca H, Garbaye J, Domenach AM (1999b) Leaf natural 15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120:171–182

    Article  Google Scholar 

  • Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889

    Article  CAS  Google Scholar 

  • Russo SE, Kochsiek A, Olney J, Thompson L, Miller AE, Tan S (2013) Nitrogen uptake strategies of edaphically specialized Bornean tree species. Plant Ecol 214:1405–1416

    Article  Google Scholar 

  • Schmidt S, Stewart GR (2003) δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134:569–577

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, Chapin FS III, Gebauer G (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–412

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  CAS  PubMed  Google Scholar 

  • Slik JWF, Poulsen AD, Ashton PS, Cannon CH, Eichhorn KAO, Kartawinata K, Lanniari I, Nagamasu H, Nakagawa M, van Nieuwstadt MGL, Payne J, Purwaningsih Saridan A, Sidiyasa K, Verburg RW, Webb CO, Wilkie P (2003) Floristic analysis of the lowland dipterocarp forests of Borneo. J Biogeogr 30:1517–1531

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, p 787

    Google Scholar 

  • Tanaka S, Kendawang JJ, Yoshida N, Shibata K, Jee A, Kenzo T, Ninomiya I, Sakurai K (2005) Effects of shifting cultivation on soil ecosystems in Sarawak, Malaysia IV. Chemical properties of the soils and runoff water at Niah and Bakam experimental sites. Soil Sci Plant Nutr 51:525–533

    Article  CAS  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, p 296

    Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Tsunogai U, Kido T, Hirota A, Ohkubo SB, Komatsu DD, Nakagawa F (2008) Sensitive determinations of stable nitrogen isotopic composition of organic nitrogen through chemical conversion into N2O. Rapid Commun Mass Spectrom 22:345–354

    Article  CAS  PubMed  Google Scholar 

  • Turner IM (2001) The ecology of trees in the tropical rain forest. Cambridge University Press, Cambridge, p 298

    Book  Google Scholar 

  • Vitousek PM, Shearer G, Kohl DH (1989) Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia 78:383–388

    Article  Google Scholar 

  • Wang B, Qiu YI (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Fang YT, Chen DX, Koba K, Makabe A, Luo TS, Yoh M (2014) Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China. Oecologia 174:567–580

    Article  PubMed  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098

    Article  CAS  PubMed  Google Scholar 

  • Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635

    Article  PubMed  Google Scholar 

  • Whitmore TC (1984) Tropical rain forest of the Far East, 2nd edn. Oxford University Press, Oxford, p 352

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Forest Department, Sarawak, and to Prof. T. Nakashizuka for their kind support of this study. We are grateful to the Dr. M. Yamamuro, Dr. Y. Tabayashi and the Department of Forest Site Environment in FFPRI. We acknowledge the support of Western Ag Innovations Inc., Canada for this study. This work was partly supported by JSPS KAKENHI Grants (No. 24405032, No. 24688017, No. 2410102, No. 26252020), by the Environment Research and Technology Development Fund (RF-1010, S-9) of the Ministry of the Environment, Japan, and by Japan Society for Promotion of Science (JSPS) Research Fellowships for Young Scientists to A. T-O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumi Tanaka-Oda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Koike and K. Noguchi.

Appendix

Appendix

See Table 4 and Fig. 6.

Fig. 6
figure 6

Phylogenetic tree of the studied species constructed by the Phylomatic program (ver.3) (Webb and Donoghue 2005). Note that the branch lengths are not proportional to the evolutionary rate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka-Oda, A., Kenzo, T., Inoue, Y. et al. Variation in leaf and soil δ15N in diverse tree species in a lowland dipterocarp rainforest, Malaysia. Trees 30, 509–522 (2016). https://doi.org/10.1007/s00468-015-1298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1298-9

Keywords

Navigation