• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kaneko Hiromasa  金子 弘昌

ORCIDConnect your ORCID iD *help
… Alternative Names

KANEKO Hiromasa  金子 弘昌

Less
Researcher Number 00625171
Other IDs
Affiliation (Current) 2025: 明治大学, 理工学部, 専任教授
Affiliation (based on the past Project Information) *help 2019 – 2024: 明治大学, 理工学部, 専任准教授
2012 – 2014: 東京大学, 工学(系)研究科(研究院), 助教
Review Section/Research Field
Principal Investigator
Basic Section 27020:Chemical reaction and process system engineering-related / Reaction engineering/Process system
Except Principal Investigator
Basic Section 28010:Nanometer-scale chemistry-related / Basic Section 27010:Transport phenomena and unit operations-related / Basic Section 90120:Biomaterials-related
Keywords
Principal Investigator
プロセス設計 / 直接的逆解析 / 流体シミュレーション / 人工知能 / プロセスインフォマティクス / マテリアルズインフォマティクス / ケモインフォマティクス / モデルの解釈 / モデルの逆解析 / QSAR … More / QSPR / 材料設計 / 分子設計 / ベイズ最適化 / 予測精度 / 能動学習 / 適応的実験計画法 / 時間変数 / SVR / 時間差分 / 予測誤差 / ベイズの定理 / アンサンブル学習 / サポートベクター回帰 / 適応型モデル / モデルの劣化 / ソフトセンサー / プロセス管理 … More
Except Principal Investigator
炭素材料 / 化学吸着 / 物理吸着 / 固液界面 / 自己組織化 / フラックス法 / ナノシート / 積層膜 / イオン分離 / 生命機能予測 / 計算科学 / 機能予測 / 骨形成率 / テーラード人工骨 / アパタイト / バイオセラミックス Less
  • Research Projects

    (6 results)
  • Research Products

    (133 results)
  • Co-Researchers

    (6 People)
  •  Fabrication of laminar composite membranes for selective separation of ions

    • Principal Investigator
      林 文隆
    • Project Period (FY)
      2024 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 27010:Transport phenomena and unit operations-related
    • Research Institution
      Shinshu University
  •  流体科学における結果から原因を直接予測する数理モデル逆解析法の開発Principal Investigator

    • Principal Investigator
      金子 弘昌
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 27020:Chemical reaction and process system engineering-related
    • Research Institution
      Meiji University
  •  Development of Tailored Artificial Bones with Life Functions by Integrating Experimental and Computational Science

    • Principal Investigator
      AIZAWA MAMORU
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 90120:Biomaterials-related
    • Research Institution
      Meiji University
  •  分子の物理・化学吸着による炭素表面での自在ナノ構造作成と機能開拓

    • Principal Investigator
      田原 一邦
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 28010:Nanometer-scale chemistry-related
    • Research Institution
      Meiji University
  •  Research on inverse analysis and scientific interpretation of property prediction modelsPrincipal Investigator

    • Principal Investigator
      Kaneko Hiromasa
    • Project Period (FY)
      2019 – 2022
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 27020:Chemical reaction and process system engineering-related
    • Research Institution
      Meiji University
  •  Development of adaptive nonlinear regression methods for stable and efficient process controlPrincipal Investigator

    • Principal Investigator
      KANEKO Hiromasa
    • Project Period (FY)
      2012 – 2014
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Reaction engineering/Process system
    • Research Institution
      The University of Tokyo

All 2024 2023 2022 2021 2020 2019 2015 2014 2013 2012

All Journal Article Presentation Book

  • [Book] 化学・化学工学のための実践データサイエンス2022

    • Author(s)
      金子 弘昌
    • Total Pages
      192
    • Publisher
      朝倉書店
    • ISBN
      4254250479
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Book] Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析2021

    • Author(s)
      金子 弘昌
    • Total Pages
      188
    • Publisher
      講談社
    • ISBN
      9784065235300
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Book] Pythonで気軽に化学・化学工学2021

    • Author(s)
      化学工学会、金子 弘昌
    • Total Pages
      196
    • Publisher
      丸善出版
    • ISBN
      9784621306154
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Book] 化学のためのPythonによるデータ解析・機械学習入門2019

    • Author(s)
      金子 弘昌
    • Total Pages
      240
    • Publisher
      オーム社
    • ISBN
      9784274224416
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Book] ソフトセンサー入門 -基礎から実用的研究例まで-2014

    • Author(s)
      船津 公人, 金子 弘昌
    • Total Pages
      224
    • Publisher
      コロナ社
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Material Design of Porous Hydroxyapatite Ceramics via Inverse Analysis of an Estimation Model for Bone-Forming Ability Based on Machine Learning and Experimental Validation of Biological Hard Tissue Responses2024

    • Author(s)
      Horikawa Shota、Suzuki Kitaru、Motojima Kohei、Nakano Kazuaki、Nagaya Masaki、Nagashima Hiroshi、Kaneko Hiromasa、Aizawa Mamoru
    • Journal Title

      Materials

      Volume: 17 Issue: 3 Pages: 571-571

    • DOI

      10.3390/ma17030571

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Journal Article] Prediction of bone formation rate of bioceramics using machine learning and image analysis2024

    • Author(s)
      Yamamoto Ayano、Horikawa Shota、Suzuki Kitaru、Aizawa Mamoru、Kaneko Hiromasa
    • Journal Title

      New Journal of Chemistry

      Volume: 48 Issue: 13 Pages: 5599-5604

    • DOI

      10.1039/d3nj05991j

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Journal Article] Retrosynthetic and Synthetic Reaction Prediction Model Based on Sequence‐to‐Sequence with Attention for Polymer Designs2023

    • Author(s)
      Taniwaki Hiroaki、Kaneko Hiromasa
    • Journal Title

      Macromolecular Theory and Simulations

      Volume: - Issue: 4

    • DOI

      10.1002/mats.202300011

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Nanoscale chemical patterning of graphite at different length scales2023

    • Author(s)
      Rahul Sasikumar、Rodr?guez Gonz?lez Miriam C.、Hirose Shingo、Kaneko Hiromasa、Tahara Kazukuni、Mali Kunal S.、De Feyter Steven
    • Journal Title

      Nanoscale

      Volume: 15 Issue: 24 Pages: 10295-10305

    • DOI

      10.1039/d3nr00632h

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Journal Article] Machine Learning Model for Predicting the Material Properties and Bone Formation Rate and Direct Inverse Analysis of the Model for New Synthesis Conditions of Bioceramics2023

    • Author(s)
      Motojima Kohei、Shiratsuchi Rina、Suzuki Kitaru、Aizawa Mamoru、Kaneko Hiromasa
    • Journal Title

      Industrial & Engineering Chemistry Research

      Volume: 62 Issue: 14 Pages: 5898-5906

    • DOI

      10.1021/acs.iecr.3c00332

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20H04538, KAKENHI-PROJECT-19K15352
  • [Journal Article] Local interpretation of nonlinear regression model with k-nearest neighbors2023

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Digital Chemical Engineering

      Volume: 6 Pages: 100078-100078

    • DOI

      10.1016/j.dche.2022.100078

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] De Novo Direct Inverse QSPR/QSAR: Chemical Variational Autoencoder and Gaussian Mixture Regression Models2023

    • Author(s)
      Nemoto Kohei、Kaneko Hiromasa
    • Journal Title

      Journal of Chemical Information and Modeling

      Volume: 63 Issue: 3 Pages: 794-805

    • DOI

      10.1021/acs.jcim.2c01298

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Design of batch process with machine learning, feature extraction, and direct inverse analysis2023

    • Author(s)
      Yamakage Shuto、Kaneko Hiromasa
    • Journal Title

      Case Studies in Chemical and Environmental Engineering

      Volume: 7 Pages: 100308-100308

    • DOI

      10.1016/j.cscee.2023.100308

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Direct prediction of the batch time and process variable profiles using batch process data based on different batch times2023

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Computers & Chemical Engineering

      Volume: 169 Pages: 108072-108072

    • DOI

      10.1016/j.compchemeng.2022.108072

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Spatially Controlled Aryl Radical Grafting of Graphite Surfaces Guided by Self-Assembled Molecular Networks of Linear Alkane Derivatives: The Importance of Conformational Dynamics2023

    • Author(s)
      Aoi Sota、Hirose Shingo、Soeda Wakana、Kaneko Hiromasa、Mali Kunal S.、De Feyter Steven、Tahara Kazukuni
    • Journal Title

      Langmuir

      Volume: 39 Issue: 17 Pages: 5986-5994

    • DOI

      10.1021/acs.langmuir.2c03434

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Journal Article] Design and Analysis of Metal Oxides for CO<sub>2</sub> Reduction Using Machine Learning, Transfer Learning, and Bayesian Optimization2022

    • Author(s)
      Iwama Ryo、Takizawa Koji、Shinmei Kenichi、Baba Eisuke、Yagihashi Noritoshi、Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 7 Issue: 12 Pages: 10709-10717

    • DOI

      10.1021/acsomega.2c00461

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Process-Informatics-Assisted Preparation of Lithium Titanate Crystals with Various Sizes and Morphologies2022

    • Author(s)
      Kaneko Daigo、Kaneko Hiromasa、Hayashi Fumitaka、Fukaishi Kohei、Yamada Tetsuya、Teshima Katsuya
    • Journal Title

      Industrial & Engineering Chemistry Research

      Volume: 62 Issue: 1 Pages: 511-518

    • DOI

      10.1021/acs.iecr.2c02729

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] True Gaussian mixture regression and genetic algorithm-based optimization with constraints for direct inverse analysis2022

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Science and Technology of Advanced Materials: Methods

      Volume: 2 Issue: 1 Pages: 14-22

    • DOI

      10.1080/27660400.2021.2024101

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Molecular design of monomers by considering the dielectric constant and stability of the polymer2022

    • Author(s)
      Taniwaki Hiroaki、Kaneko Hiromasa
    • Journal Title

      Polymer Engineering &amp; Science

      Volume: 62 Issue: 9 Pages: 2750-2756

    • DOI

      10.1002/pen.26058

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Integration of Materials and Process Informatics: Metal Oxide and Process Design for CO<sub>2</sub> Reduction2022

    • Author(s)
      Iwama Ryo、Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 7 Issue: 50 Pages: 46922-46934

    • DOI

      10.1021/acsomega.2c06008

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Deep Convolutional Neural Network with Deconvolution and a Deep Autoencoder for Fault Detection and Diagnosis2022

    • Author(s)
      Kanno Yasuhiro、Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 7 Issue: 2 Pages: 2458-2466

    • DOI

      10.1021/acsomega.1c06607

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Design of adaptive soft sensor based on Bayesian optimization2022

    • Author(s)
      Yamakage Shuto、Kaneko Hiromasa
    • Journal Title

      Case Studies in Chemical and Environmental Engineering

      Volume: 6 Pages: 100237-100237

    • DOI

      10.1016/j.cscee.2022.100237

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Initial Sample Selection in Bayesian Optimization for Combinatorial Optimization of Chemical Compounds2022

    • Author(s)
      Morishita Toshiharu、Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 8 Issue: 2 Pages: 2001-2009

    • DOI

      10.1021/acsomega.2c05145

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Symmetry and spacing controls in periodic covalent functionalization of graphite surfaces templated by self-assembled molecular networks2022

    • Author(s)
      Hashimoto Shingo、Kaneko Hiromasa、De Feyter Steven、Tobe Yoshito、Tahara Kazukuni
    • Journal Title

      Nanoscale

      Volume: 14 Issue: 35 Pages: 12595-12609

    • DOI

      10.1039/d2nr02858a

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22J11635, KAKENHI-PROJECT-23K20271
  • [Journal Article] Genetic Algorithm-Based Partial Least-Squares with Only the First Component for Model Interpretation2022

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 7 Issue: 10 Pages: 8968-8979

    • DOI

      10.1021/acsomega.1c07379

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Development of Prediction Models for the Self-Accelerating Decomposition Temperature of Organic Peroxides2022

    • Author(s)
      Morishita Toshiharu、Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 7 Issue: 2 Pages: 2429-2437

    • DOI

      10.1021/acsomega.1c06481

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Adaptive soft sensor based on transfer learning and ensemble learning for multiple process states2022

    • Author(s)
      Yamada Nobuhito、Kaneko Hiromasa
    • Journal Title

      Analytical Science Advances

      Volume: 3 Issue: 5-6 Pages: 205-211

    • DOI

      10.1002/ansa.202200013

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Design of Molecules with Low Hole and Electron Reorganization Energy Using DFT Calculations and Bayesian Optimization2022

    • Author(s)
      Ando Tatsuhito、Shimizu Naoto、Yamamoto Norihisa、Matsuzawa Nobuyuki N.、Maeshima Hiroyuki、Kaneko Hiromasa
    • Journal Title

      The Journal of Physical Chemistry A

      Volume: 126 Issue: 36 Pages: 6336-6347

    • DOI

      10.1021/acs.jpca.2c05229

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Cross‐validated permutation feature importance considering correlation between features2022

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Analytical Science Advances

      Volume: 3 Issue: 9-10 Pages: 278-287

    • DOI

      10.1002/ansa.202200018

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Correlation between the Metal and Organic Components, Structure Property, and Gas-Adsorption Capacity of Metal?Organic Frameworks2021

    • Author(s)
      Yuyama Shunsuke、Kaneko Hiromasa
    • Journal Title

      Journal of Chemical Information and Modeling

      Volume: 61 Issue: 12 Pages: 5785-5792

    • DOI

      10.1021/acs.jcim.1c01205

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Design of Experimental Conditions with Machine Learning for Collaborative Organic Synthesis Reactions Using Transition-Metal Catalysts2021

    • Author(s)
      Ebi Tomoya、Sen Abhijit、Dhital Raghu N.、Yamada Yoichi M. A.、Kaneko Hiromasa
    • Journal Title

      ACS Omega

      Volume: 6 Issue: 41 Pages: 27578-27586

    • DOI

      10.1021/acsomega.1c04826

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Lifting the limitations of Gaussian mixture regression through coupling with principal component analysis and deep autoencoding2021

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 218 Pages: 104437-104437

    • DOI

      10.1016/j.chemolab.2021.104437

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Estimation and visualization of process states using latent variable models based on Gaussian process2021

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Analytical Science Advances

      Volume: - Issue: 5-6 Pages: 326-333

    • DOI

      10.1002/ansa.202000122

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Adaptive soft sensor ensemble for selecting both process variables and dynamics for multiple process states2021

    • Author(s)
      Yamada Nobuhito、Kaneko Hiromasa
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 219 Pages: 104443-104443

    • DOI

      10.1016/j.chemolab.2021.104443

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Transfer learning and wavelength selection method in NIR spectroscopy to predict glucose and lactate concentrations in culture media using VIP‐Boruta2021

    • Author(s)
      Kaneko Hiromasa、Kono Shunsuke、Nojima Akihiro、Kambayashi Takuya
    • Journal Title

      Analytical Science Advances

      Volume: 2 Issue: 9-10 Pages: 470-479

    • DOI

      10.1002/ansa.202000177

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Examining variable selection methods for the predictive performance of regression models and the proportion of selected variables and selected random variables2021

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Heliyon

      Volume: 7 Issue: 6 Pages: e07356-e07356

    • DOI

      10.1016/j.heliyon.2021.e07356

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Prediction of spin?spin coupling constants with machine learning in NMR2021

    • Author(s)
      Shibata Kaina、Kaneko Hiromasa
    • Journal Title

      Analytical Science Advances

      Volume: - Issue: 9-10 Pages: 464-469

    • DOI

      10.1002/ansa.202000180

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Design of ethylene oxide production process based on adaptive design of experiments and Bayesian optimization2021

    • Author(s)
      Iwama Ryo、Kaneko Hiromasa
    • Journal Title

      Journal of Advanced Manufacturing and Processing

      Volume: 3 Issue: 3

    • DOI

      10.1002/amp2.10085

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Adaptive design of experiments based on Gaussian mixture regression2021

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 208 Pages: 104226-104226

    • DOI

      10.1016/j.chemolab.2020.104226

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Extended Gaussian mixture regression for forward and inverse analysis2021

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 213 Pages: 104325-104325

    • DOI

      10.1016/j.chemolab.2021.104325

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Estimating the reliability of predictions in locally weighted partial least‐squares modeling2021

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Journal of Chemometrics

      Volume: 35 Issue: 9

    • DOI

      10.1002/cem.3364

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Two‐ and Three‐dimensional Quantitative Structure‐activity Relationship Models Based on Conformer Structures2020

    • Author(s)
      Nitta Fumika、Kaneko Hiromasa
    • Journal Title

      Molecular Informatics

      Volume: 40 Issue: 3 Pages: 2000123-2000123

    • DOI

      10.1002/minf.202000123

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Design of thermoelectric materials with high electrical conductivity, high Seebeck coefficient, and low thermal conductivity2020

    • Author(s)
      Yoshihama Hiroki、Kaneko Hiromasa
    • Journal Title

      Analytical Science Advances

      Volume: - Issue: 5-6 Pages: 289-294

    • DOI

      10.1002/ansa.202000114

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Support vector regression that takes into consideration the importance of explanatory variables2020

    • Author(s)
      Kaneko Hiromasa
    • Journal Title

      Journal of Chemometrics

      Volume: 35 Issue: 4

    • DOI

      10.1002/cem.3327

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Direct inverse analysis based on Gaussian mixture regression for multiple objective variables in material design2020

    • Author(s)
      Shimizu Naoto、Kaneko Hiromasa
    • Journal Title

      Materials & Design

      Volume: 196 Pages: 109168-109168

    • DOI

      10.1016/j.matdes.2020.109168

    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces2020

    • Author(s)
      Tahara Kazukuni, Kubo Yuki, Hashimoto Shingo, Ishikawa Toru, Kaneko Hiromasa, Brown Anton, Hirsch Brandon E., De Feyter Steven, Tobe Yoshito
    • Journal Title

      Journal of the American Chemical Society

      Volume: 142 Issue: 16 Pages: 7699-7708

    • DOI

      10.1021/jacs.0c02979

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H04794, KAKENHI-PROJECT-23K20271
  • [Journal Article] Development of Ensemble Learning Method Considering Applicability Domains2019

    • Author(s)
      Keigo Sato, Hiromasa Kaneko
    • Journal Title

      J. Comput. Chem. Jpn.

      Volume: 18 Issue: 4 Pages: 187-193

    • DOI

      10.2477/jccj.2019-0010

    • NAID

      130007790939

    • ISSN
      1347-1767, 1347-3824
    • Language
      Japanese
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Journal Article] Fast Optimization of Hyperparameters for Support Vector Regression Models with Highly Predictive Ability2015

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 142 Pages: 64-69

    • DOI

      10.1016/j.chemolab.2015.01.001

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Moving Window and Just-In-Time Soft Sensor Model Based on Time Differences Considering a Small Number of Measurements2015

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      Industrial & Engineering Chemistry Research

      Volume: 54 Issue: 2 Pages: 700-704

    • DOI

      10.1021/ie503962e

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] The Selective Use of Adaptive Soft Sensors Based on Process State2014

    • Author(s)
      Hiromasa Kaneko, Takeshi Okada, Kimito Funatsu
    • Journal Title

      Industrial & Engineering Chemistry Research

      Volume: 53 Issue: 41 Pages: 15962-15968

    • DOI

      10.1021/ie502058t

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Applicability Domain Based on Ensemble Learning in Classification and Regression Analyses2014

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      Journal of Chemical Information and Modeling

      Volume: 54 Issue: 9 Pages: 2469-2482

    • DOI

      10.1021/ci500364e

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Adaptive Soft Sensor Based on Online Support Vector Regression and Bayesian Ensemble Learning for Various States in Chemical Plants2014

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 137 Pages: 57-66

    • DOI

      10.1016/j.chemolab.2014.06.008

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Database Monitoring Index for Adaptive Soft Sensors and the Application to Industrial Process2014

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Journal Title

      AIChE Journal

      Volume: 60 Issue: 1 Pages: 160-169

    • DOI

      10.1002/aic.14260

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Application of Online Support Vector Regression for Soft Sensors2014

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Journal Title

      AIChE Journal

      Volume: 60 Issue: 2 Pages: 600-612

    • DOI

      10.1002/aic.14299

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Classification of the Degradation of Soft Sensor Models and Discussion on Adaptive Models2013

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      AIChE Journal

      Volume: 未定 Issue: 7 Pages: 2339-2347

    • DOI

      10.1002/aic.14006

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Automatic Determination Method Based on Cross-Validation for Optimal Intervals of Time Difference2013

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      J. Chem. Eng. Japan / JCEJ

      Volume: 46 Issue: 3 Pages: 219-225

    • DOI

      10.1252/jcej.12we241

    • NAID

      10031159967

    • ISSN
      0021-9592, 1881-1299
    • Language
      English
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Criterion for Evaluating the Predictive Ability of Nonlinear Regression Models without Cross-Validation2013

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Journal Title

      Journal of Chemical Information and Modeling

      Volume: 53 Issue: 9 Pages: 2341-2348

    • DOI

      10.1021/ci4003766

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Estimation of Predictive Accuracy of Soft Sensor Models Based on Data Density2013

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 128 Pages: 111-117

    • DOI

      10.1016/j.chemolab.2013.08.005

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Development of a New Index to Monitor Database for Soft Sensors2013

    • Author(s)
      金子 弘昌, 船津 公人
    • Journal Title

      J. Comput. Aided Chem.

      Volume: 14 Issue: 0 Pages: 11-22

    • DOI

      10.2751/jcac.14.11

    • NAID

      130004927285

    • ISSN
      1345-8647
    • Language
      Japanese
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Discussion on Time Difference Models and Intervals of Time Difference for Application of Soft Sensors2013

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      Industrial & Engineering Chemistry Research

      Volume: 52 Issue: 3 Pages: 1322-1334

    • DOI

      10.1021/ie302582v

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Applicability Domain of Soft Sensor Models Based on One-Class Support Vector Machine2013

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      AIChE Journal

      Volume: 未定 Issue: 6 Pages: 2046-2050

    • DOI

      10.1002/aic.14010

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Nonlinear Regression Method with Variable Region Selection and Application to Soft Sensors2013

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Journal Title

      Chemometrics and Intelligent Laboratory Systems

      Volume: 121 Pages: 26-32

    • DOI

      10.1016/j.chemolab.2012.11.017

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Journal Article] Adaptive Soft Sensor Model Using Online Support Vector Regression with the Time Variable and Discussion on Appropriate Hyperparameters and Window Size2013

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Journal Title

      Computers & Chemical Engineering

      Volume: 58 Pages: 288-297

    • DOI

      10.1016/j.compchemeng.2013.07.016

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] 機械学習による 多孔質リン酸カルシウムセラミックスの 材料設計と生体硬組織反応の実験的検証2024

    • Author(s)
      堀川祥汰, 鈴木 来, 本島康平, 中野和明, 長屋昌樹, 長嶋比呂志, 金子弘昌, 相澤 守
    • Organizer
      日本セラミックス協会 第62回セラミックス基礎科学討論会
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Construction of Estimation Model of Bone Formation for Porous Hydroxyapatite Ceramics by Machine Learning2023

    • Author(s)
      M. Aizawa, S. Horikawa, T. Yokota, R. Shiratsuchi, K. Suzuki, K. Motojima and H. Kaneko
    • Organizer
      11th International Symposium on Inorganic Phosphate Materials (ISIPM)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Prediction of bone formation rate of artificial bone by machine learning considering variation of experimental results2023

    • Author(s)
      Y. Sakai, S. Horikawa, K. Suzuki, M. Aizawa, H. Kaneko
    • Organizer
      Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 33)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの進展と実現2023

    • Author(s)
      金子弘昌
    • Organizer
      日本結晶成長学会 新技術・新材料分科会 第 2 回研究会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 機械学習により設計した多孔質リン酸カルシウムセラミックスの材料特性とその生体硬組織反応の検証2023

    • Author(s)
      堀川祥汰, 鈴木 来, 本島康平, 金子弘昌, 中野和明, 長屋昌樹, 長嶋比呂志, 相澤 守
    • Organizer
      無機マテリアル学会 第147回学術講演会
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Construction of a Model Estimating Bone-Forming Ability of Bioceramics Utilizing Machine Learning and Its Inverse Analysis to Verify Material Properties2023

    • Author(s)
      S. Horikawa, K. Suzuki, K. Motojima, H. Kaneko and M. Aizawa
    • Organizer
      International Symposium on Inorganic and Environmental Materials 2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Construction of A Model Estimating Bone-Forming Ability of Bioceramics Utilizing Machine Learning and Its Validation by In Vivo Expperiments2023

    • Author(s)
      S. Horikawa, K. Suzuki, K. Motojima, K. Nakano, M. Nagaya, H. Nagashima, H. Kaneko and M. Aizawa
    • Organizer
      Biomaterials International (BMI) Conference 2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Predictive machine learning model constructure for bone formation rate using scanning electron microscope images2023

    • Author(s)
      A. Yamamoto, S. Horikawa, K. Suzuki, M. Aizawa and H. Kaneko
    • Organizer
      International Symposium on Inorganic and Environmental Materials 2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] プロセスインフォマティクスに基づくプロセスの設計および管理2022

    • Author(s)
      金子弘昌
    • Organizer
      日本化学会第102春季年会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Periodic Chemical Modification of Carbon Surfaces Using Self-Assembled Monolayers Formed by Alkane Derivatives as Templates2022

    • Author(s)
      Sota, Aoi, Shingo, Hirose, Hiromasa, Kaneko, Kazukuni, Tahara.
    • Organizer
      International Conference on Physical Organic Chemistry (ICPOC 25)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Presentation] 化学工学におけるデータサイエンスの研究例・活用例2022

    • Author(s)
      金子弘昌
    • Organizer
      令和 3 年度化学工学会関東支部若手の会(ChEC-East)講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Molecular, Material, and Process Designs with Direct Inverse Analysis2022

    • Author(s)
      金子弘昌
    • Organizer
      錯体化学会 第72回討論会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] ジアルキルウレア誘導体を鋳型とした炭素表面の周期的化学修飾2022

    • Author(s)
      青井 綜汰、廣瀬 真吾、金子 弘昌、De Feyter Steven, 田原 一邦
    • Organizer
      第12回CSJ化学フェスタ
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Presentation] ケモ・マテリアルズ・プロセスインフォマティクスの直接的逆解析法による分子・材料・プロセス設計2022

    • Author(s)
      金子弘昌
    • Organizer
      令和3年度 第5回 食・触コンソーシアム シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 画像処理および機械学習におけるバイオマテリアルの高精度骨形成率予測のための特性設計2022

    • Author(s)
      山本彩乃, 堀川祥太, 鈴木 来, 相澤 守, 金子弘昌
    • Organizer
      第35回セラミックス協会秋季シンポジウム
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] 分子設計・材料設計・プロセス設計のための直接的逆解析法2022

    • Author(s)
      金子弘昌
    • Organizer
      高分子学会関東支部神奈川地区講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] データサイエンスに基づく高機能性材料の研究・開発・評価・製造の支援2022

    • Author(s)
      金子弘昌
    • Organizer
      2022年第1回半導体3D実装材料プロセス・インフォマティクス研究会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] データサイエンス・機械学習を活用した分子・材料・プロセスの設計2022

    • Author(s)
      金子弘昌
    • Organizer
      日本プロセス化学会2022ウインターシンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] データサイエンスに基づく高機能性材料の研究・開発・評価・製造2022

    • Author(s)
      金子弘昌
    • Organizer
      第41回電子材料シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 化学プラントにおけるデータベースを利用したプロセス設計・装置設計・プロセス制御2022

    • Author(s)
      金子弘昌
    • Organizer
      第27回 関西地区分離技術講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 最新情報科学を活用したプロセス設計・実験計画のスマート化2022

    • Author(s)
      金子弘昌
    • Organizer
      第37回さんわかセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 機械学習を活用したバイオセラミックスの骨形成推定モデルの構築と逆解析による実験条件の提案2022

    • Author(s)
      堀川祥汰, 白土里奈, 鈴木 来, 本島康平, 金子弘昌, 相澤 守
    • Organizer
      2022年度第3回酸素酸塩材料科学研究会, 日本セラミックス協会
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] 計算科学を導入した骨形成推定モデルの構築とその逆解析による作製条件の提案2022

    • Author(s)
      堀川祥汰, 白土里奈, 鈴木 来, 本島康平, 金子弘昌, 相澤 守
    • Organizer
      第35回セラミックス協会秋季シンポジウム
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] プロセスインフォマティクスの進展2022

    • Author(s)
      金子弘昌
    • Organizer
      化学工学会 反応工学部会 CVD 反応分科会 第35回シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 機械学習を活用した骨形成推定モデルの構築とその逆解析による材料特性の検証2022

    • Author(s)
      堀川祥汰,鈴木 来, 本島康平, 金子弘昌,相澤 守
    • Organizer
      第44回日本バイオマテリアル学会大会
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Periodic Covalent Functionalization of Graphitic Surfaces Templated by Self-Assembled Molecular Networks: Symmetry and Spacing Controls2022

    • Author(s)
      Shingo Hashimoto, Takumi Kuroda, Kaneko Hiromasa, Steven De Feyter, Yoshito Tobe, Kazukuni Tahara
    • Organizer
      International Conference on Physical Organic Chemistry (ICPOC 25)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Presentation] データサイエンスによる高機能材料の設計2021

    • Author(s)
      金子弘昌
    • Organizer
      第4回ファインケミカルジャパン2021
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 自己集合単分子膜を鋳型とした炭素表面の周期的化 学修飾:対称性と間隔の制御2021

    • Author(s)
      橋本信吾、黒田拓海、金子 弘昌、Steven De Feyter、戸部 義人、田原一邦
    • Organizer
      第31 回基礎有機化学討論会
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Presentation] データ駆動型化学工学の進展2021

    • Author(s)
      金子弘昌
    • Organizer
      第50回結晶成長国内会議(JCCG-50)
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Prediction of properties and bone formation rate for bioceramics and design of synthesis conditions with machine learning2021

    • Author(s)
      Kohei Motojima, Rina Shiratsuchi, Kitaru Suzuki, Mamoru Aizawa and Hiromasa Kaneko
    • Organizer
      The 2021 International Chemical Congress of Pacific Basin Societies (Pacifichem 2021)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] Pythonで気軽に化学・化学工学2021

    • Author(s)
      金子弘昌
    • Organizer
      第11回CSJ化学フェスタ2021
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Symmetry and spacing controls in templated covalent functionalization of graphitic surfaces2021

    • Author(s)
      Shingo Hashimoto, Takumi Kuroda, Hiromasa Kaneko, Steven De Feyter, Yoshito Tobe, Kazukuni Tahara
    • Organizer
      The 2021 International Chemical Congress of Pacific Basin Societies
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K20271
  • [Presentation] 機械学習に基づく分子・材料設計および金属有機構造体への応用2021

    • Author(s)
      金子弘昌
    • Organizer
      日本セラミックス協会 第34回秋季シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 化学業界におけるデータサイエンス2021

    • Author(s)
      金子弘昌
    • Organizer
      INCHEM TOKYO 2021
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 計算科学を積極的に活用した骨形成推定モデルの構築2021

    • Author(s)
      相澤 守, 横田倫啓, 井古田未来, 鈴木 来, 本島康平, 金子弘昌
    • Organizer
      第43回日本バイオマテリアル学会大会・第8回アジアバイオマテリアル学会
    • Data Source
      KAKENHI-PROJECT-20H04538
  • [Presentation] 分子・材料・プロセスを設計する直接的逆解析法の開発2021

    • Author(s)
      金子弘昌
    • Organizer
      令和3年度(2021 年度)日本材料科学会若手研究者講演会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 機械学習を活用した分子・材料の物性予測2021

    • Author(s)
      金子弘昌
    • Organizer
      超臨界流体部会 第20回サマースクール
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 安全性が高い高熱伝導率を有する冷媒の設計2020

    • Author(s)
      山本統久, 金子弘昌
    • Organizer
      化学工学会第85年会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] データサイエンスによる高機能材料の研究・開発・評価・製造の支援2020

    • Author(s)
      金子弘昌
    • Organizer
      先端化学・材料技術部会 CC分科会 講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] プロセス変数と時間遅れを同時に最適化した適応型ソフトセンサーの開発2020

    • Author(s)
      山田信仁, 金子弘昌
    • Organizer
      化学工学会第85年会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] ベイズ最適化に基づくエチレンオキシド製造プロセスの設計2020

    • Author(s)
      岩間稜, 金子弘昌
    • Organizer
      化学工学会第85年会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 誘電率と安定性を考慮した高分子材料のモノマー設計2020

    • Author(s)
      谷脇寛明, 金子弘昌
    • Organizer
      化学工学会第85年会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] ベイズ最適化に基づく適応型ソフトセンサー選択手法の開発2020

    • Author(s)
      山影柊斗, 金子弘昌
    • Organizer
      化学工学会第85年会
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] データ解析および機械学習による高機能材料の研究・開発・製造の支援2019

    • Author(s)
      金子弘昌
    • Organizer
      日本化学会 産学交流委員会 R&D懇話会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] 生成モデルによるデータの可視化・回帰分析・クラス分類・モデルの適用範囲の設定・モデルの逆解析・分子設計・材料設計2019

    • Author(s)
      金子弘昌
    • Organizer
      第63回日本薬学会関東支部大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Constructing Interpretable and Accurate Model Combining Decision Tree and Random Forest2019

    • Author(s)
      Naoto Shimizu, Hiromasa Kaneko
    • Organizer
      2019 AIChE Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Nonlinear Dynamic Feature Extraction Based on Gaussian Process Dynamical Models for Jit-Based Adaptive Soft Sensors2019

    • Author(s)
      Yasuhiro Kanno, Hiromasa Kaneko
    • Organizer
      2019 AIChE Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] New Evaluation Method of Soft Sensors Considering Characteristics of Time Series Data2019

    • Author(s)
      Takumi Kojima, Hiromasa Kaneko
    • Organizer
      2019 AIChE Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Molecular, Material, Product and Process Design and Process Control Based on Materials Informatics, Chemoinformatics and Process Informatics2019

    • Author(s)
      Hiromasa Kaneko
    • Organizer
      Materials Research Meeting 2019
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K15352
  • [Presentation] Application of Ensemble Online Support Vector Regression to the Prediction of Fouling in Membrane Bioreactors2015

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Organizer
      3W Expo 2015 + CPPE Expo 2015
    • Place of Presentation
      Bangkok, Thailand
    • Year and Date
      2015-01-31
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] [研究奨励賞] 化学プラントにおける制御性能向上のための推定制御手法に関する研究2015

    • Author(s)
      金子 弘昌
    • Organizer
      化学工学会第80年会
    • Place of Presentation
      芝浦工業大学、東京都
    • Year and Date
      2015-03-21
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] プラントの運転データを最大限に活用するためのソフトセンサーおよびプロセス管理手法2014

    • Author(s)
      金子 弘昌
    • Organizer
      プラントオペレーション分科会 第131回研究会
    • Place of Presentation
      大阪科学技術センター、大阪府
    • Year and Date
      2014-05-22
    • Invited
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] クラス分類および回帰分析におけるモデルの適用範囲, 第37回情報化学討論会2014

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      第37回情報化学討論会
    • Place of Presentation
      豊橋技術科学大学、愛知県
    • Year and Date
      2014-11-28
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Automatic Database Monitoring for Process Control Systems2014

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Organizer
      he 27th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE2014)
    • Place of Presentation
      Kaohsiung, Taiwan
    • Year and Date
      2014-06-04
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Fast Optimization of Hyperparameters of Support Vector Regression Model Considering its Predictive Ability2014

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Organizer
      4th International Conference on Engineering Optimization(EngOpt2014)
    • Place of Presentation
      Lisbon, Portugal
    • Year and Date
      2014-09-11
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Adaptive regression model for nonlinear and time-varying systems2014

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Organizer
      The 5th French-Japanese Workshop on Computational Methods in Chemistry
    • Place of Presentation
      Strasbourg, France
    • Year and Date
      2014-07-01
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] ソフトセンサーにおけるデータベース管理のための自動的パラメータ選択2014

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      化学工学会第79年会
    • Place of Presentation
      岐阜県, 岐阜大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Virtual Sensors Predicting Drug Product Quality with Chemoinformatic Techniques2014

    • Author(s)
      Hiromasa Kaneko
    • Organizer
      JCUP V
    • Place of Presentation
      朝日生命大手町ビル、東京都
    • Year and Date
      2014-06-05
    • Invited
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Moving windowモデルおよびアンサンブル学習を活用した適応型ソフトセンサー手法2014

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      化学工学会第46回秋季大会
    • Place of Presentation
      九州大学、福岡県
    • Year and Date
      2014-09-18
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] High Predictive Soft Sensors Based on Time Difference (TD) Models and the Selection of Optimal TD Intervals2013

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Organizer
      9th World Congress of Chemical Engineering
    • Place of Presentation
      Seoul, Korea
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Adaptive Soft Sensor Model Using Online Support Vector Regression and the Time Variable2013

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Organizer
      2013 AIChE Annual Meeting
    • Place of Presentation
      San Francisco, U.S.A.
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] 適応型ソフトセンサーのためのデータベース管理指標の開発2013

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      化学工学会第45回秋季大会
    • Place of Presentation
      岡山県, 岡山大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] 非線形回帰モデルの予測性能評価指標の開発2013

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      第36回情報化学討論会
    • Place of Presentation
      茨城県, 筑波大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Adaptive Soft Sensor Model Using Online Support Vector Regression with the Time Variable and Discussion on Appropriate Parameter Settings2013

    • Author(s)
      Hiromasa. Kaneko, Kimito Funatsu
    • Organizer
      17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems
    • Place of Presentation
      Fukuoka, Japan
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] 適応型非線型回帰分析手法の開発およびソフトセンサーへの応用2013

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      日本コンピュータ化学会2013年春季年会
    • Place of Presentation
      東京都, 東京工業大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Virtual sensors with chemoinformatic techniques2013

    • Author(s)
      Hiromasa Kaneko
    • Organizer
      Asian International Symposium &#8211;Theoretical Chemistry, Chemoinformatics, Computational Chemistry&#8211;
    • Place of Presentation
      滋賀県、立命館大学びわこ・くさつキャンパス
    • Invited
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] ソフトセンサーモデルの劣化の分類と各適応的モデルに関する考察2012

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      化学工学会第44回秋季大会
    • Place of Presentation
      宮城県、東北大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] Discussion on Time Difference Models for Application of Soft Sensors2012

    • Author(s)
      Hiromasa Kaneko, Kimito Funatsu
    • Organizer
      19th Regional Symposium on Chemical Engineering
    • Place of Presentation
      Indonesia, Bali
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] 時間差分に基づくソフトセンサー手法に関する考察および時間差分間隔の検討2012

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      第35回情報化学討論会
    • Place of Presentation
      広島県、広島大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • [Presentation] One-class support vector machineを用いたソフトセンサーモデルの予測誤差の推定2012

    • Author(s)
      金子 弘昌, 船津 公人
    • Organizer
      日本コンピュータ化学会2012年秋季年会
    • Place of Presentation
      山形県、山形大学
    • Data Source
      KAKENHI-PROJECT-24760629
  • 1.  AIZAWA MAMORU (10255713)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 16 results
  • 2.  松本 守雄 (40209656)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  林 文隆 (20739536)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  田中 秀樹 (80376368)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 5.  田中 厚志 (30417878)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 6.  田原 一邦 (40432463)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 8 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi