• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Sakaki Takeshi  榊 剛史

ORCIDConnect your ORCID iD *help
Researcher Number 00735805
Other IDs
Affiliation (Current) 2025: 東京大学, 未来ビジョン研究センター, 客員研究員
Affiliation (based on the past Project Information) *help 2019 – 2024: 東京大学, 未来ビジョン研究センター, 客員研究員
Review Section/Research Field
Principal Investigator
Basic Section 62020:Web informatics and service informatics-related
Keywords
Principal Investigator
社会ネットワーク分析 / 情報拡散 / ウェブマイニング / 計算社会科学 / ユーザ行動モデリング / インフォデミック / SNS / ネットワーク成長過程 / エコーチェンバー / サイエンスコミュニケーション … More / SNS分析 / コミュニティ抽出 / 炎上 / 情報拡散分析 Less
  • Research Projects

    (3 results)
  • Research Products

    (14 results)
  • Co-Researchers

    (1 People)
  •  A study on the reproduction of social network growth processes and the prevention of information bias based on real dataPrincipal Investigator

    • Principal Investigator
      榊 剛史
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 62020:Web informatics and service informatics-related
    • Research Institution
      The University of Tokyo
  •  Research on Measuring the Quality of SNS Content Based on the Characteristics and Reactions of Information RecipientsPrincipal Investigator

    • Principal Investigator
      Sakaki Takeshi
    • Project Period (FY)
      2021 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 62020:Web informatics and service informatics-related
    • Research Institution
      The University of Tokyo
  •  Research on modeling of information diffusion on social media based on post groups and user groupsPrincipal Investigator

    • Principal Investigator
      Sakaki Takeshi
    • Project Period (FY)
      2019 – 2021
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 62020:Web informatics and service informatics-related
    • Research Institution
      The University of Tokyo

All 2024 2022 2021 2020 2019

All Journal Article Presentation

  • [Journal Article] Anti-vaccine rabbit hole leads to political representation: the case of Twitter in Japan2024

    • Author(s)
      Toriumi Fujio、Sakaki Takeshi、Kobayashi Tetsuro、Yoshida Mitsuo
    • Journal Title

      Journal of Computational Social Science

      Volume: - Issue: 1 Pages: 1-19

    • DOI

      10.1007/s42001-023-00241-8

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-21K17859, KAKENHI-PROJECT-23K20584, KAKENHI-PROJECT-23K22084, KAKENHI-PROJECT-23K25160
  • [Journal Article] Do media events still unite the host nation’s citizens? The case of the Tokyo 2020 Olympic Games2022

    • Author(s)
      Sakaki Takeshi、Kobayashi Tetsuro、Yoshida Mitsuo、Toriumi Fujio
    • Journal Title

      PLOS ONE

      Volume: 17 Issue: 12 Pages: e0278911-e0278911

    • DOI

      10.1371/journal.pone.0278911

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-21K17859, KAKENHI-PROJECT-19H00582, KAKENHI-PROJECT-23K20584
  • [Journal Article] Dense and influential core promotion of daily viral information spread in political echo chambers2021

    • Author(s)
      Asatani Kimitaka、Yamano Hiroko、Sakaki Takeshi、Sakata Ichiro
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 7491-7491

    • DOI

      10.1038/s41598-021-86750-w

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K20413
  • [Journal Article] Retrospective analysis of controversial topics on COVID-19 in Japan2021

    • Author(s)
      Miyazaki Kunihiro、Uchiba Takayuki、Toriumi Fujio、Tanaka Kenji、Sakaki Takeshi
    • Journal Title

      Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

      Volume: 2021 Pages: 510-517

    • DOI

      10.1145/3487351.3490963

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K17859
  • [Journal Article] Japanese conservative messages propagate to moderate users better than their liberal counterparts on Twitter2021

    • Author(s)
      Yoshida Mitsuo、Sakaki Takeshi、Kobayashi Tetsuro、Toriumi Fujio
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 19224-19224

    • DOI

      10.1038/s41598-021-98349-2

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K20413, KAKENHI-PROJECT-19H00582
  • [Journal Article] Constructive Approach for Early Extraction of Viral Spreading Social Issues from Twitter2020

    • Author(s)
      Chou Jen Shiau、Masanao Ochi、Takeshi Sakaki、Ken Nagahama、Kanji Sakai、Junichiro Mori、Ichiro Sakata
    • Journal Title

      Proceedings of ACM Web Science 2020 (WebSci2020)

      Volume: 1 Pages: 96-105

    • DOI

      10.1145/3394231.3397899

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K12076, KAKENHI-PROJECT-19K20413, KAKENHI-PROJECT-17K00427
  • [Journal Article] Social Emotions Under the Spread of COVID-19 Using Social Media2020

    • Author(s)
      Toriumi Fujio、Sakaki Takeshi、Yoshida Mitsuo
    • Journal Title

      Transactions of the Japanese Society for Artificial Intelligence

      Volume: 35 Issue: 4 Pages: F-K45_1-7

    • DOI

      10.1527/tjsai.F-K45

    • NAID

      130007868000

    • ISSN
      1346-0714, 1346-8030
    • Year and Date
      2020-07-01
    • Language
      Japanese
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K20413, KAKENHI-PROJECT-19H02376
  • [Journal Article] Comparative evaluation of two approaches for retweet clustering: A text-based method and graph-based method2019

    • Author(s)
      Uchida Kazuki、Toriumi Fujio、Sakaki Takeshi
    • Journal Title

      Web Intelligence

      Volume: 17 Issue: 4 Pages: 271-284

    • DOI

      10.3233/web-190418

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K20413, KAKENHI-PROJECT-19H02376
  • [Presentation] コミュニティの偏りを用いた炎上の一般性評価:再燃焼系炎上における分析2020

    • Author(s)
      鳥海 不二夫, 榊 剛史
    • Organizer
      人工知能学会全国大会論文集 2020
    • Data Source
      KAKENHI-PROJECT-19K20413
  • [Presentation] ユーザ反応時間に基づくメディア企業SNSアカウントの傾向分析2020

    • Author(s)
      榊 剛史、鳥海 不二夫
    • Organizer
      電子情報通信学会 言語理解とコミュニケーション研究会 2019年度2月研究会
    • Data Source
      KAKENHI-PROJECT-19K20413
  • [Presentation] 公開 ソーシャルポルノ仮説に基づくメディア企業SNSアカウントの扇動性に関する分析2020

    • Author(s)
      榊 剛史, 鳥海 不二夫
    • Organizer
      人工知能学会全国大会論文集 2020
    • Data Source
      KAKENHI-PROJECT-19K20413
  • [Presentation] SNSデータを用いたセキュリティインシデント早期検知に関する実現可能性検証2019

    • Author(s)
      榊 剛史、大坪 雄平、鳥海 不二夫
    • Organizer
      コンピュータセキュリティシンポジウム2019論文集
    • Data Source
      KAKENHI-PROJECT-19K20413
  • [Presentation] ソーシャルメディア上の大規模情報拡散に関する俯瞰的可視化手法の提案2019

    • Author(s)
      榊 剛史、鳥海 不二夫、大知 正直
    • Organizer
      第33回人工知能学会全国大会
    • Data Source
      KAKENHI-PROJECT-19K20413
  • [Presentation] ネット炎上におけるユーザーの共振構造2019

    • Author(s)
      小山 耕平、浅谷 公威、榊 剛史、坂田 一郎
    • Organizer
      第33回人工知能学会全国大会
    • Data Source
      KAKENHI-PROJECT-19K20413
  • 1.  MORI Junichiro
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi