• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hashimoto Kenji  橋本 健治

ORCIDConnect your ORCID iD *help
Researcher Number 00793986
Affiliation (based on the past Project Information) *help 2017 – 2022: 東京大学, 大学院数理科学研究科, 特任研究員
Review Section/Research Field
Principal Investigator
Algebra
Keywords
Principal Investigator
格子 / カラビ・ヤウ多様体 / クレモナ変換 / 代数幾何 / ミラー対称性 / 保型形式 / 無限群 / 有限群 / 自己同型 / 格子理論 / K3曲面
  • Research Projects

    (1 results)
  • Research Products

    (10 results)
  •  Automorphisms and periods of K3 surfacesPrincipal Investigator

    • Principal Investigator
      Hashimoto Kenji
    • Project Period (FY)
      2017 – 2022
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      The University of Tokyo

All 2023 2022 2021 2020 2019 2018

All Journal Article Presentation

  • [Journal Article] Examples of non-Kaehler Calabi-Yau 3-folds with arbitrarily large $b_2$2023

    • Author(s)
      Kenji Hashimoto and Taro Sano
    • Journal Title

      Geometry & Topology

      Volume: 27 Issue: 1 Pages: 131-152

    • DOI

      10.2140/gt.2023.27.131

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K14156, KAKENHI-PROJECT-23K03032, KAKENHI-PROJECT-19K14509
  • [Journal Article] Extensions of maximal symplectic actions on K3 surfaces2021

    • Author(s)
      Brandhorst Simon、Hashimoto Kenji
    • Journal Title

      Annales Henri Lebesgue

      Volume: 4 Pages: 785-809

    • DOI

      10.5802/ahl.88

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Journal Article] K3 surfaces with Picard number 2, Salem polynomials and Pell equation2020

    • Author(s)
      K. Hashimoto, JongHae Keum and Kwangwoo Lee
    • Journal Title

      J. Pure Appl. Algebra

      Volume: 224 no. 1 Issue: 1 Pages: 432-443

    • DOI

      10.1016/j.jpaa.2019.05.015

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Journal Article] Reconstruction of general elliptic K3 surfaces from their Gromov?Hausdorff limits2019

    • Author(s)
      Hashimoto Kenji、Ueda Kazushi
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 147 Issue: 5 Pages: 1963-1969

    • DOI

      10.1090/proc/14428

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14156, KAKENHI-PROJECT-16H03930
  • [Presentation] ピカール数3のK3曲面の自己同型について2022

    • Author(s)
      橋本健治
    • Organizer
      特殊多様体・特殊関数研究会(北海道大学)
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Presentation] Global sections of some special elliptic surfaces2018

    • Author(s)
      橋本健治
    • Organizer
      Workshop on algebraic surfaces, University of Hanover
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Presentation] Global sections of some special elliptic surfaces2018

    • Author(s)
      橋本健治
    • Organizer
      UC Riverside Algebraic Geometry Seminar
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Presentation] Finite symplectic actions on the K3 lattice2018

    • Author(s)
      Kenji Hashimoto
    • Organizer
      K3 surfaces and lattice theory seminar, 北海道教育大学札幌駅前サテライト
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Presentation] Period map of a certain family of K3 surfaces with an S_5 action2018

    • Author(s)
      Kenji Hashimoto
    • Organizer
      Japanese--European symposium on Symplectic Varieties and Moduli Spaces -third edition-, 東京理科大学
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14156
  • [Presentation] Mirror symmetry for complete intersection K3 surfaces in weighted projective spaces2018

    • Author(s)
      Kenji Hashimoto
    • Organizer
      Working Workshop on Calabi--Yau Varieties and Related Topics, 学習院大学
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14156

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi