• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kumagai Masaya  熊谷 将也

ORCIDConnect your ORCID iD *help
Researcher Number 00881054
Other IDs
Affiliation (Current) 2025: 京都大学, 複合原子力科学研究所, 研究員
Affiliation (based on the past Project Information) *help 2020 – 2023: 京都大学, 複合原子力科学研究所, 特定助教
Review Section/Research Field
Principal Investigator
Basic Section 26020:Inorganic materials and properties-related / 0401:Materials engineering, chemical engineering, and related fields
Keywords
Principal Investigator
材料工学 / 機械学習 / マテリアルズ・インフォマティクス / グラフ構造 / 結晶グラフ / 結晶構造 / 熱電変換材料 / マテリアルズインフォマティクス / プロセス・インフォマティクス
  • Research Projects

    (2 results)
  • Research Products

    (12 results)
  •  大規模な実験的物性データを用いた結晶構造と物性との関係性解明Principal Investigator

    • Principal Investigator
      熊谷 将也
    • Project Period (FY)
      2022 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 26020:Inorganic materials and properties-related
    • Research Institution
      Kyoto University
  •  Development of Next-Generation Machine Intelligence for Predicting Material Properties, Considering the Influence of Experimental Processes and Sample StructuresPrincipal Investigator

    • Principal Investigator
      Kumagai Masaya
    • Project Period (FY)
      2020 – 2022
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0401:Materials engineering, chemical engineering, and related fields
    • Research Institution
      Kyoto University

All 2023 2022 2021

All Journal Article Presentation

  • [Journal Article] DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials2023

    • Author(s)
      Hirofumi Tsuruta, Yukari Katsura, Masaya Kumagai
    • Journal Title

      IEEE ICMLA2023

      Volume: -

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K14474
  • [Journal Article] Effects of data bias on machine-learning?based material discovery using experimental property data2022

    • Author(s)
      Kumagai Masaya、Ando Yuki、Tanaka Atsumi、Tsuda Koji、Katsura Yukari、Kurosaki Ken
    • Journal Title

      Science and Technology of Advanced Materials: Methods

      Volume: 2 Issue: 1 Pages: 302-309

    • DOI

      10.1080/27660400.2022.2109447

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K22466, KAKENHI-PLANNED-19H05820
  • [Journal Article] Design of Deep Learning Model for Predicting Material Properties Using Crystal Structure Represented by Three-Dimensional Mesh2022

    • Author(s)
      鶴田 博文、桂 ゆかり、熊谷 将也
    • Journal Title

      Proceedings of the Annual Conference of JSAI

      Volume: JSAI2022 Issue: 0 Pages: 4C3GS1004-4C3GS1004

    • DOI

      10.11517/pjsai.JSAI2022.0_4C3GS1004

    • Language
      Japanese
    • Data Source
      KAKENHI-PROJECT-22K14474
  • [Presentation] DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials2023

    • Author(s)
      Hirofumi Tsuruta, Yukari Katsura, Masaya Kumagai
    • Organizer
      IEEE ICMLA2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K14474
  • [Presentation] Direct prediction of mechanical properties from X-ray diffraction patterns using machine learning2022

    • Author(s)
      Naoki Hato, Masaya Kumagai, Ken Kurosaki
    • Organizer
      TMS 2022 Annual Meeting & Exhibition
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K22466
  • [Presentation] マテリアルズ・インフォマティクス― 大規模な実験データ収集Webシステムの開発と応用 ―2022

    • Author(s)
      熊谷 将也
    • Organizer
      複合原子力化学研究所第56回学術講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K22466
  • [Presentation] 3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計2022

    • Author(s)
      鶴田 博文, 桂 ゆかり, 熊谷 将也
    • Organizer
      2022年度人工知能学会全国大会(第36回)
    • Data Source
      KAKENHI-PROJECT-22K14474
  • [Presentation] Applicability domain for prediction models of thermoelectric properties based on similarity to known materials2022

    • Author(s)
      Masaya Kumagai
    • Organizer
      TMS2022
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K22466
  • [Presentation] 3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計2022

    • Author(s)
      鶴田博文, 桂ゆかり, 熊谷将也
    • Organizer
      2022年度 人工知能学会全国大会(第36回)
    • Data Source
      KAKENHI-PROJECT-20K22466
  • [Presentation] 実験MIと新材料探索2022

    • Author(s)
      熊谷 将也, 安藤 有希, 田中 敦美, 津田 宏治, 桂 ゆかり, 黒崎 健
    • Organizer
      第83回 応用物理学会秋季学術講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K14474
  • [Presentation] Applicability domain for prediction models of thermoelectric properties based on similarity to known materials2022

    • Author(s)
      Masaya Kumagai, Yukari Katsura, Yuki Ando, Atsumi Tanaka, Koji Tsuda, Ken Kurosaki
    • Organizer
      TMS 2022 Annual Meeting & Exhibition
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K22466
  • [Presentation] 既知材料との類似性に基づいた熱電特性予測モデルの適用範囲2021

    • Author(s)
      熊谷 将也
    • Organizer
      日本熱電学会
    • Data Source
      KAKENHI-PROJECT-20K22466

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi