• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Yasuda Shohei  安田 昌平

ORCIDConnect your ORCID iD *help
… Alternative Names

YASUDA SHOHEI  安田 昌平

Less
Researcher Number 00899247
Affiliation (Current) 2025: 東京大学, 大学院工学系研究科(工学部), 助教
Affiliation (based on the past Project Information) *help 2021 – 2024: 東京大学, 大学院工学系研究科(工学部), 助教
Review Section/Research Field
Principal Investigator
Basic Section 22050:Civil engineering plan and transportation engineering-related
Keywords
Principal Investigator
交通ネットワーク / 交通状態推定 / 深層学習 / 交通流理論 / 走行軌跡データ / 機械学習 / 交通工学 / グラフニューラルネットワーク / ニューラルネットワーク / kinematic wave理論 / ベイズ統計学 / 空間統計学 / ネットワーク表現
  • Research Projects

    (2 results)
  • Research Products

    (3 results)
  • Co-Researchers

    (1 People)
  •  疎な観測に基づくネットワークの交通状態予測を目的とした交通流理論と深層学習の融合Principal Investigator

    • Principal Investigator
      安田 昌平
    • Project Period (FY)
      2024 – 2027
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 22050:Civil engineering plan and transportation engineering-related
    • Research Institution
      The University of Tokyo
  •  Development of Real-Time Traffic State Estimation Methods for Next-Generation Traffic ControlPrincipal Investigator

    • Principal Investigator
      YASUDA SHOHEI
    • Project Period (FY)
      2021 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 22050:Civil engineering plan and transportation engineering-related
    • Research Institution
      The University of Tokyo

All 2024 2022

All Journal Article Presentation

  • [Journal Article] Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning2024

    • Author(s)
      Yasuda Shohei、Katayama Hiroki、Nakanishi Wataru、Iryo Takamasa
    • Journal Title

      International Journal of Intelligent Transportation Systems Research

      Volume: 22 Issue: 1 Pages: 136-145

    • DOI

      10.1007/s13177-023-00383-z

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-23K17551, KAKENHI-PROJECT-21K14266, KAKENHI-PROJECT-20H02267, KAKENHI-PROJECT-23K26218
  • [Journal Article] Comparative Validation of Spatial Interpolation Methods for Traffic Density for Data-driven Travel-time Prediction2022

    • Author(s)
      Katayama Hiroki、Yasuda Shohei、Fuse Takashi
    • Journal Title

      International Journal of Intelligent Transportation Systems Research

      Volume: 20 Issue: 3 Pages: 830-837

    • DOI

      10.1007/s13177-022-00326-0

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-21K14266
  • [Presentation] Traffic Density Based Travel-Time Prediction With GCN-LSTM2022

    • Author(s)
      Katayama Hiroki, Yasuda Shohei, Fuse Takashi
    • Organizer
      IEEE International Conference on Intelligent Transportation Systems
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14266
  • 1.  中西 航
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi