• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Yin Gaohong  尹 高虹

ORCIDConnect your ORCID iD *help
Researcher Number 00906282
Affiliation (based on the past Project Information) *help 2021 – 2022: 東京大学, 生産技術研究所, 特任研究員
Review Section/Research Field
Principal Investigator
0303:Civil engineering, social systems engineering, safety engineering, disaster prevention engineering, and related fields
Keywords
Principal Investigator
Machine learning / flood and drought / LSTM / TWSA / Drought / Flood / Deep Learning / Downscaling / TWS / GRACE
  • Research Projects

    (1 results)
  • Research Products

    (7 results)
  • Co-Researchers

    (1 People)
  •  Improving flood and drought prediction using downscaled GRACE terrestrial water storagePrincipal Investigator

    • Principal Investigator
      Yin Gaohong
    • Project Period (FY)
      2021 – 2022
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0303:Civil engineering, social systems engineering, safety engineering, disaster prevention engineering, and related fields
    • Research Institution
      The University of Tokyo

All 2022

All Journal Article Presentation

  • [Journal Article] A support vector machine-based method for improving real-time hourly precipitation forecast in Japan2022

    • Author(s)
      Yin Gaohong、Yoshikane Takao、Yamamoto Kosuke、Kubota Takuji、Yoshimura Kei
    • Journal Title

      Journal of Hydrology

      Volume: 612 Pages: 128125-128125

    • DOI

      10.1016/j.jhydrol.2022.128125

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21H05002, KAKENHI-PROJECT-22H04938, KAKENHI-PROJECT-21K20443
  • [Journal Article] Comprehensive analysis of GEO-KOMPSAT-2A and FengYun satellite-based precipitation estimates across Northeast Asia2022

    • Author(s)
      Yin Gaohong, Baik Jongjin, Park Jongmin
    • Journal Title

      GIScience & Remote Sensing

      Volume: 59 Issue: 1 Pages: 782-800

    • DOI

      10.1080/15481603.2022.2067970

    • Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20443
  • [Presentation] Toward Assimilation of Downscaled Terrestrial Water Storage into Today's Earth for Flood Prediction2022

    • Author(s)
      Yin Gaohong, Yoshimura Kei
    • Organizer
      The Joint PI Meeting of JAXA Earth Observation Missions FY2022
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20443
  • [Presentation] Towards Assimilation of GRACE Terrestrial Water Storage into a Land Surface Model for Flood and Drought Prediction2022

    • Author(s)
      Yin Gaohong, Yoshimura Kei
    • Organizer
      Land Surface Modeling Summit 2022
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20443
  • [Presentation] A support vector machine-based method for improving real-time hourly precipitation forecast in Japan2022

    • Author(s)
      Gaohong Yin
    • Organizer
      The Joint PI Meeting of JAXA Earth Observation Mission
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K20443
  • [Presentation] The Gravity Recovery and Climate Experiment Mission and Its Application in Hydrology2022

    • Author(s)
      Yin Gaohong
    • Organizer
      Invited Lecture at Lahore University of Management Sciences, Pakistan
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K20443
  • [Presentation] Application of GRACE in Hydrologyl Study2022

    • Author(s)
      Gaohong Yin
    • Organizer
      Lecture at Lahore University of Management Sciences
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K20443
  • 1.  芳村 圭
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi