• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hibino Masaki  日比野 正樹

ORCIDConnect your ORCID iD *help
… Alternative Names

HIBINO Masaki  日比野 正樹

Less
Researcher Number 10441461
Other IDs
Affiliation (Current) 2025: 名城大学, 理工学部, 准教授
Affiliation (based on the past Project Information) *help 2011 – 2013: 名城大学, 理工学部, 准教授
2009 – 2010: Okayama University of Science, 工学部, 准教授
2007 – 2008: Okayama University of Science, 工学部, 講師
Review Section/Research Field
Principal Investigator
Basic analysis
Keywords
Principal Investigator
解析接続 / 総和可能性 / 発散級数 / 複素解析 / 関数方程式論 / 総合可能性 / 収束羃級数 / 縮小写像 / 関数空間論
  • Research Projects

    (2 results)
  • Research Products

    (20 results)
  •  Gevrey asymptotic theory for first-order linear and semi-linear partial differential equations of nilpotent typePrincipal Investigator

    • Principal Investigator
      HIBINO Masaki
    • Project Period (FY)
      2011 – 2013
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Basic analysis
    • Research Institution
      Meijo University
  •  Gevrey theory for singular first-order partial differential equations in complex domainsPrincipal Investigator

    • Principal Investigator
      HIBINO Masaki
    • Project Period (FY)
      2007 – 2010
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Basic analysis
    • Research Institution
      Okayama University of Science

All 2013 2012 2010 2009 2008 2007 Other

All Journal Article Presentation

  • [Journal Article] On the summability of formal solutions for singular first-order linear partial differential equations2012

    • Author(s)
      Masaki HIBINO
    • Journal Title

      Research Reports of the Faculty of Science and Technology (Meijo University)

      Volume: 52 Pages: 1-6

    • NAID

      40019824758

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23740114
  • [Journal Article] Summability of formal solutions for singular first-order linear PDEs with holomorphic coefficients2008

    • Author(s)
      Masaki HIBINO
    • Journal Title

      RIMS Kokyuroku Bessatsu 10

      Pages: 47-62

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] 或る1階線型偏微分方程式に対する発散羃級数解の総和可能性について2013

    • Author(s)
      日比野 正樹
    • Organizer
      2013日本数学会年会
    • Place of Presentation
      京都大学
    • Year and Date
      2013-03-20
    • Data Source
      KAKENHI-PROJECT-23740114
  • [Presentation] On the summability of divergent power series solutions of certain first-order linear PDEs2013

    • Author(s)
      日比野 正樹
    • Organizer
      Formal and Analytic Solutions of Differential, Difference and Discrete Equations
    • Place of Presentation
      Mathematical Research and Conference Center, Bedlewo, Poland
    • Year and Date
      2013-08-26
    • Data Source
      KAKENHI-PROJECT-23740114
  • [Presentation] 1階偏微分方程式に対するCauchy-Kowalevsky の定理の不動点定理による証明2012

    • Author(s)
      日比野 正樹
    • Organizer
      2012日本数学会年会
    • Place of Presentation
      東京理科大学
    • Year and Date
      2012-03-26
    • Data Source
      KAKENHI-PROJECT-23740114
  • [Presentation] 特異1階偏微分方程式に対する形式的羃級数解の収束について...三宅・白井の定理の不動点定理による証明...2010

    • Author(s)
      日比野正樹
    • Organizer
      2010日本数学会年会
    • Place of Presentation
      慶応義塾大学
    • Year and Date
      2010-03-24
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Convergence of formal solutions for singular first-order non-linear PDEs---Proof of Miyake-Shirai's theorem by the fixed point theorem---2010

    • Author(s)
      日比野正樹
    • Organizer
      第2回 名古屋微分方程式研究集会
    • Place of Presentation
      名古屋大学
    • Year and Date
      2010-03-17
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Convergence of formal solutions for singular first-order non-linear PDEs --- Proof of Miyake-Shirai's theorem by the fixed point theorem ---2010

    • Author(s)
      日比野正樹
    • Organizer
      第2回名古屋微分方程式研究集会
    • Place of Presentation
      名古屋大学
    • Year and Date
      2010-03-17
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] 特異1階偏微分方程式に対する形式的羃級数解の収束について---三宅・白井の定理の不動点定理による証明---2010

    • Author(s)
      日比野正樹
    • Organizer
      2010日本数学会年会
    • Place of Presentation
      慶応義塾大学
    • Year and Date
      2010-03-24
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] 特異1階偏微分方程式に対する形式的羃級数解の収束について…三宅・白井の定理の不動点定理による証明…2010

    • Author(s)
      日比野正樹
    • Organizer
      2010日本数学会年会
    • Place of Presentation
      慶応義塾大学
    • Year and Date
      2010-03-24
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Convergence of formal solutions for singular first-order non-linear PDEs---Proof of Miyake-Shirai's theorem by the fixed point theorem---2010

    • Author(s)
      日比野正樹
    • Organizer
      第2回名古屋微分方程式研究集会
    • Place of Presentation
      名古屋大学
    • Year and Date
      2010-03-17
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Summability of formal solutions for singular first-order linear PDEs with holomorphic coefficients II2009

    • Author(s)
      日比野正樹
    • Organizer
      Microlocal analysis and Related Topics
    • Place of Presentation
      関西学院大学
    • Year and Date
      2009-10-19
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Summability of formal solutions for singular first-order linear PDEs with holomorphic coefficients II2009

    • Author(s)
      日比野正樹
    • Organizer
      Microlocal Analysis and Related Topics
    • Place of Presentation
      関西学院大学
    • Year and Date
      2009-10-19
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Borel summability of divergent solutions for singular 1st order linear PDEs with holomorphic coefficients2008

    • Author(s)
      日比野正樹
    • Organizer
      2008日本数学会年会
    • Place of Presentation
      近畿大学
    • Year and Date
      2008-03-23
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Summability of divergent solutions for singular first order linear PDEs with holomorphic coefficients2008

    • Author(s)
      日比野正樹
    • Organizer
      Holomorphic partial differential equations, small divisors and summability
    • Place of Presentation
      フランス・cirm
    • Year and Date
      2008-01-31
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Summability of divergent solutions for singular first order linear PDEs with holomorphic coefficients2008

    • Author(s)
      日比野正樹
    • Organizer
      Holomorphic partial differential equations, small divisors and summability
    • Place of Presentation
      フランス・CIRM
    • Year and Date
      2008-01-31
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] Summability of formal solutions for singular first order linear PDEs with holomorphic coefficients2007

    • Author(s)
      日比野正樹
    • Organizer
      Differential Equations and Exact WKB Analysis
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2007-10-12
    • Data Source
      KAKENHI-PROJECT-19740078
  • [Presentation] 或る1階線型偏微分方程式に対する発散羃級数解の総和可能性について

    • Author(s)
      日比野正樹
    • Organizer
      2013日本数学会年会
    • Place of Presentation
      京都大学
    • Data Source
      KAKENHI-PROJECT-23740114
  • [Presentation] On the summability of divergent power series solutions for certain first-order linear PDEs

    • Author(s)
      日比野正樹
    • Organizer
      Formal and Analytic Solutions of Differential, Difference and Discrete Equations
    • Place of Presentation
      Mathematical Research and Conference Center, Bedlewo, Poland
    • Data Source
      KAKENHI-PROJECT-23740114
  • [Presentation] 1階偏微分方程式に対するCauchy-Kowalevskyの定理の不動点定理による証明

    • Author(s)
      日比野正樹
    • Organizer
      2012日本数学会年会
    • Place of Presentation
      東京理科大学
    • Data Source
      KAKENHI-PROJECT-23740114

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi