• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

sannai akiyoshi  三内 顕義

ORCIDConnect your ORCID iD *help
… Alternative Names

Sannai Akiyoshi  三内 顕義

Less
Researcher Number 10610595
Other IDs
Affiliation (Current) 2025: 京都大学, 理学研究科, 特定准教授
Affiliation (based on the past Project Information) *help 2023 – 2024: 京都大学, 理学研究科, 特定准教授
2020 – 2022: 国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員
2017 – 2018: 国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員
2016: 京都大学, 数理解析研究所, 特定助教
Review Section/Research Field
Principal Investigator
Transformative Research Areas, Section (II) / Basic Section 12040:Applied mathematics and statistics-related / Algebra
Keywords
Principal Investigator
深層学習 / 構造的因果推論 / メタ学習 / 群論 / 対称性 / グラフ理論 / 因果グラフ / 表現論 / 構造的因果モデル / 深層ニューラルネット … More / 不変式論 / 幾何学的深層学習 / Fano type / globally F-regular / 普遍近似定理 / ベジェ曲線 / 多目的最適化 / 多項式 / 対称群 / シンボリックリース環 / フロベニウス写像 / アーベル多様体 Less
  • Research Projects

    (3 results)
  • Research Products

    (19 results)
  •  Geometric deep learning derived by causality.Principal Investigator

    • Principal Investigator
      三内 顕義
    • Project Period (FY)
      2023 – 2024
    • Research Category
      Grant-in-Aid for Transformative Research Areas (A)
    • Review Section
      Transformative Research Areas, Section (II)
    • Research Institution
      Kyoto University
  •  Study on deep neural nets with group theoryPrincipal Investigator

    • Principal Investigator
      Sannai Akiyoshi
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12040:Applied mathematics and statistics-related
    • Research Institution
      Kyoto University
      Institute of Physical and Chemical Research
  •  Study on projective varieties with Frobenius mapsPrincipal Investigator

    • Principal Investigator
      Sannai Akiyoshi
    • Project Period (FY)
      2016 – 2018
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      Institute of Physical and Chemical Research
      Kyoto University

All 2024 2021 2020 2019 2018 2017 2016

All Journal Article Presentation

  • [Journal Article] Invariant and Equivariant Reynolds Networks2024

    • Author(s)
      Akiyoshi Sannai, Makoto Kawano, Wataru Kumagai
    • Journal Title

      journal of machine learning research

      Volume: 25 Pages: 1-36

    • Data Source
      KAKENHI-PUBLICLY-23H04484
  • [Journal Article] Invariant and Equivariant Reynolds Networks2024

    • Author(s)
      Akiyoshi Sannai, Makoto Kawano, Wataru Kumagai
    • Journal Title

      journal of machine learning research

      Volume: 25 Pages: 1-36

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Journal Article] On the number of linear functions composing deep neural network: Towards a refined definition of neural networks complexity2021

    • Author(s)
      Yuuki Takai, Akiyoshi Sannai, Matthieu Cordonnier
    • Journal Title

      The 24th International Conference on Artificial Intelligence and Statistics

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Journal Article] Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces2021

    • Author(s)
      Akiyoshi Sannai, Masaaki Imaizumi, Makoto Kawano
    • Journal Title

      37th Conference on Uncertainty in Artificial Intelligence

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Journal Article] Group Equivariant Conditional Neural Processes2021

    • Author(s)
      Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, Yutaka Matsuo
    • Journal Title

      International Conference on Learning Representations

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Journal Article] A Characterization of Ordinary Abelian Varieties by the Frobenius Push-Forward of the Structure Sheaf II2018

    • Author(s)
      Sho Ejiri, Akiyoshi Sannai
    • Journal Title

      International Mathematics Research Notices

      Volume: 288

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Journal Article] A characterization of ordinary abelian varieties by the Frobenius push-forward of the structure sheaf2016

    • Author(s)
      Sannai Akiyoshi, Tanaka Hiromu
    • Journal Title

      Mathematische Annalen

      Volume: 366 Issue: 3-4 Pages: 1067-1087

    • DOI

      10.1007/s00208-015-1352-3

    • Peer Reviewed / Acknowledgement Compliant / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25220701, KAKENHI-PROJECT-16K17581
  • [Presentation] Group Equivariant Conditional Neural Processes2021

    • Author(s)
      Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, Yutaka Matsuo
    • Organizer
      International Conference on Learning Representations
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Presentation] On the number of linear functions composing deep neural network: Towards a refined definition of neural networks complexity2021

    • Author(s)
      Yuuki Takai, Akiyoshi Sannai, Matthieu Cordonnier
    • Organizer
      The 24th International Conference on Artificial Intelligence and Statistics
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Presentation] 対称性を持つ深層学習2021

    • Author(s)
      三内顕義
    • Organizer
      東京大学大学院数理科学研究科情報数学セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Presentation] Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces2021

    • Author(s)
      Akiyoshi Sannai, Masaaki Imaizumi, Makoto Kawano
    • Organizer
      37th Conference on Uncertainty in Artificial Intelligence
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Presentation] 群畳み込みニューラルネットワークによる同変的写像の普遍近似定理2020

    • Author(s)
      熊谷亘、三内顕義
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-20K03743
  • [Presentation] Bezier Simplex Fitting: Describing Pareto Fronts of Simplicial Problems with Small Samples in Multi-objective Optimization2019

    • Author(s)
      Ken Kobayashi, Naoki Hamada, Akiyoshi Sannai, Akinori Tanaka, Kenichi Bannai, Masashi Sugiyama
    • Organizer
      The Thirty-Third AAAI Conference on Artificial Intelligence
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Presentation] Asymptotic Risk of Bezier Simplex Fitting2019

    • Author(s)
      Akinori Tanaka, Akiyoshi Sannai, Ken Kobayashi, Naoki Hamada
    • Organizer
      International Conference on Compute and Data Analysis
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Presentation] Frobenius maps and algebraic varieties2017

    • Author(s)
      三内顕義
    • Organizer
      代数幾何学シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Presentation] 正標数のアーベル多様体の特徴付けについて2017

    • Author(s)
      三内顕義
    • Organizer
      農工大数学セミナー2017
    • Place of Presentation
      東京農工大学
    • Year and Date
      2017-03-21
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Presentation] Abelian varieties in positive characteristic2017

    • Author(s)
      三内顕義
    • Organizer
      The 2nd Higher dimensional algebraic geometry Echigo Yuzawa sympos ium
    • Place of Presentation
      越後湯沢公民館
    • Year and Date
      2017-02-14
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Presentation] decomposability of Frobenius push-forward of structure sheaves2016

    • Author(s)
      三内顕義
    • Organizer
      都の西北代数幾何学シンポジウム
    • Place of Presentation
      早稲田大学
    • Year and Date
      2016-11-16
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17581
  • [Presentation] Frobenius methods in algebraic geometry2016

    • Author(s)
      三内顕義
    • Organizer
      京都大学代数幾何学セミナー
    • Place of Presentation
      京都大学
    • Year and Date
      2016-07-08
    • Data Source
      KAKENHI-PROJECT-16K17581

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi