• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kita Nanao  喜多 奈々緒

ORCIDConnect your ORCID iD *help
… Alternative Names

喜多 奈々緒  キタ ナナオ

Less
Researcher Number 10738082
Other IDs
Affiliation (Current) 2025: 名古屋大学, 多元数理科学研究科, 准教授
Affiliation (based on the past Project Information) *help 2023: 名古屋大学, 多元数理科学研究科, 准教授
2018 – 2021: 東京理科大学, 理工学部経営工学科, 助教
2015: 東京大学, 新領域創成科学研究科, 研究員
2014: 東京大学, 新領域創成科学研究科, 特任研究員
Review Section/Research Field
Principal Investigator
Basic Section 12030:Basic mathematics-related / Foundations of mathematics/Applied mathematics
Keywords
Principal Investigator
離散最適化 / グラフ理論 / 離散数学 / アルゴリズム / グラフ / スピングラス / 統計物理 / 離散数理 / マッチング理論 / ネットワーク … More / 多項式時間可解性 / 配達夫問題 / T-ジョイン / パリティ因子 / 標準分解 / 組合せ最適化 Less
  • Research Projects

    (3 results)
  • Research Products

    (17 results)
  •  Innovating the foundation of Ising spin glass theory by an approach from discrete mathematicsPrincipal Investigator

    • Principal Investigator
      喜多 奈々緒
    • Project Period (FY)
      2023 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12030:Basic mathematics-related
    • Research Institution
      Nagoya University
  •  Toward a radical extension of matroidal optimization theoryPrincipal Investigator

    • Principal Investigator
      喜多 奈々緒
    • Project Period (FY)
      2018 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 12030:Basic mathematics-related
    • Research Institution
      Tokyo University of Science
  •  離散的対象の上の効率的なアルゴリズム設計の統一的理論構築Principal Investigator

    • Principal Investigator
      喜多 奈々緒
    • Project Period (FY)
      2014 – 2015
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Research Field
      Foundations of mathematics/Applied mathematics
    • Research Institution
      The University of Tokyo

All 2022 2021 2020 2019 2018 Other

All Journal Article Presentation

  • [Journal Article] Tight cuts in bipartite grafts I: Capital distance components2022

    • Author(s)
      Nanao Kita
    • Journal Title

      arXiv preprint

      Volume: arXiv:2202.00192

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Journal Article] Bipartite graft III: General case2021

    • Author(s)
      Nanao Kita
    • Journal Title

      arXiv preprint

      Volume: arXiv:2108.00245

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Journal Article] Constructive characterization of critical bipartite grafts2021

    • Author(s)
      Nanao Kita
    • Journal Title

      arXiv preprint

      Volume: arXiv:2202.00192

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Journal Article] Bipartite Graft II: Cathedral Decomposition for Combs2021

    • Author(s)
      Nanao Kita
    • Journal Title

      arXiv

      Volume: arXiv:2101.06678

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Journal Article] Bipartite Graft I: Dulmage-Mendelsohn Decomposition for Combs2020

    • Author(s)
      Nanao Kita
    • Journal Title

      arXiv

      Volume: arXiv:2007.12943

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Journal Article] Signed analogue of general Kotzig-Lovasz decomposition2020

    • Author(s)
      Kita Nanao
    • Journal Title

      Discrete Applied Mathematics

      Volume: in press Pages: 61-70

    • DOI

      10.1016/j.dam.2020.03.022

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Journal Article] Nonbipartite Dulmage-Mendelsohn Decomposition for Berge Duality2018

    • Author(s)
      Nanao Kita
    • Journal Title

      ecture Notes in Computer Science

      Volume: 10976 Pages: 293-304

    • DOI

      10.1007/978-3-319-94776-1_25

    • ISBN
      9783319947754, 9783319947761
    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] パリティ因子のための二部的カテドラル標準分解2021

    • Author(s)
      喜多 奈々緒
    • Organizer
      第181回アルゴリズム研究会
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 二部グラフにおけるパリティ因子のためのカテドラル標準分解2020

    • Author(s)
      喜多 奈々緒
    • Organizer
      2020年度応用数学合同研究集会
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] Constructive Characterization of Critical Bidirected Graphs2019

    • Author(s)
      Nanao Kita
    • Organizer
      22nd Japan Conference on Discrete and Computational Geometry, Graphs, and Games
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 二部グラフにおけるパリティ因子の標準構造2019

    • Author(s)
      喜多 奈々緒
    • Organizer
      離散数学とその応用研究集会 2019
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 双向臨界グラフの構成的特徴づけ2019

    • Author(s)
      喜多 奈々緒
    • Organizer
      応用数理学会 2019 年度年会
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 双向臨界グラフの構成的特徴づけ2019

    • Author(s)
      喜多 奈々緒
    • Organizer
      2018年度冬の LA シンポジウム
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 非二部的 Dulmage-Mendelsohn 分解と Berge 双対の束構造2018

    • Author(s)
      喜多 奈々緒
    • Organizer
      本応用数理学会 2018 年度年会
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] Nonbipartite Dulmage-Mendelsohn decomposition for Berge duality2018

    • Author(s)
      Nanao Kita
    • Organizer
      24th International Computing and Combinatorics Conference
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 双向臨界グラフの構成的特徴づけ2018

    • Author(s)
      喜多 奈々緒
    • Organizer
      2018年度応用数学合同研究集会
    • Data Source
      KAKENHI-PROJECT-18K13451
  • [Presentation] 劣モジュラ性・束代数・半順序集合について

    • Author(s)
      喜多 奈々緒
    • Organizer
      ゲノムプライバシCREST秋のワークショップ
    • Place of Presentation
      名古屋工業大学
    • Year and Date
      2014-09-11 – 2014-09-12
    • Data Source
      KAKENHI-PROJECT-26887011

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi