• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Chen Shuoye  陳 碩也

ORCIDConnect your ORCID iD *help
Researcher Number 10882962
Other IDs
Affiliation (Current) 2025: 京都大学, 生存圏研究所, 助教
Affiliation (based on the past Project Information) *help 2023 – 2024: 京都大学, 生存圏研究所, 助教
Review Section/Research Field
Principal Investigator
Basic Section 40020:Wood science-related
Except Principal Investigator
Basic Section 40020:Wood science-related
Keywords
Principal Investigator
トラッキング / コンピュータービジョン / 構造解析 / セル構造体 / 細胞構造 / 樹種識別 / 畳み込みニューラルネットワーク / 物性予測 / セマンティックセグメンテーション / 細胞変形解析
Except Principal Investigator
木材 / 接着 / 糖アルコール
  • Research Projects

    (2 results)
  • Research Products

    (6 results)
  • Co-Researchers

    (4 People)
  •  糖アルコールによる脱炭素型木材接着技術の確立

    • Principal Investigator
      梅村 研二
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 40020:Wood science-related
    • Research Institution
      Kyoto University
  •  AI assisted analyses on the structural and mechanical optimization of wood materialsPrincipal Investigator

    • Principal Investigator
      陳 碩也, 杉山 淳司
    • Project Period (FY)
      2022 – 2023
    • Research Category
      Grant-in-Aid for JSPS Fellows
    • Review Section
      Basic Section 40020:Wood science-related
    • Research Institution
      Kyoto University

All 2023 2022

All Journal Article Presentation

  • [Journal Article] Potential of machine learning approaches for predicting mechanical properties of spruce wood in the transverse direction2023

    • Author(s)
      Chen Shuoye、Shiina Rei、Nakai Kazushi、Awano Tatsuya、Yoshinaga Arata、Sugiyama Junji
    • Journal Title

      Journal of Wood Science

      Volume: 69 Issue: 1

    • DOI

      10.1186/s10086-023-02096-z

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-23K05333, KAKENHI-PROJECT-22KF0199
  • [Journal Article] Flexural behavior of wood in the transverse direction investigated using novel computer vision and machine learning approach2022

    • Author(s)
      Chen Shuoye、Awano Tatsuya、Yoshinaga Arata、Sugiyama Junji
    • Journal Title

      Holzforschung

      Volume: 76 Issue: 10 Pages: 875-885

    • DOI

      10.1515/hf-2022-0096

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22KF0199, KAKENHI-PLANNED-18H05485
  • [Presentation] Identification and classification of 18 domestic conifers by machine learning of cross-sectional optical micrographs2023

    • Author(s)
      PUJASMARA Rafif, CHEN Shuoye, AWANO Tatsuya, YOSHINAGA Arata, SUGIYAMA Junji
    • Organizer
      第73回日本木材学会大会
    • Data Source
      KAKENHI-PROJECT-22KF0199
  • [Presentation] 機械学習によるスプルース材横方向 の 物性予測2023

    • Author(s)
      陳碩也 、椎名 令、仲井一志 、粟野達也 、吉永 新、杉山淳司
    • Organizer
      第73回日本木材学会大会
    • Data Source
      KAKENHI-PROJECT-22KF0199
  • [Presentation] スプルース響板材の物性への木取りの影響および 機械学習によるその予測2022

    • Author(s)
      椎名令,仲井一志,陳 碩也,粟野達也,吉永新,杉山淳司
    • Organizer
      第72回日本木材学会大会
    • Data Source
      KAKENHI-PROJECT-22KF0199
  • [Presentation] コンピュータービションおよび機械学習による 木材細胞壁変形の解析2022

    • Author(s)
      陳碩也,杉山 淳司
    • Organizer
      日本建築学会大会学術講演梗概集
    • Data Source
      KAKENHI-PROJECT-22KF0199
  • 1.  梅村 研二 (70378909)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  松尾 美幸 (70631597)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  山内 秀文 (90279513)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  杉山 淳司 (40183842)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 6 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi