• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

TSANG SINYI  TSANG SINYI (TSANG CINDY)

ORCIDConnect your ORCID iD *help
… Alternative Names

TSANGCINDY

Less
Researcher Number 10908271
Other IDs
Affiliation (Current) 2025: お茶の水女子大学, 基幹研究院, 准教授
Affiliation (based on the past Project Information) *help 2024: お茶の水女子大学, 基幹研究院, 助教
2021 – 2022: お茶の水女子大学, 基幹研究院, 助教
Review Section/Research Field
Principal Investigator
Basic Section 11010:Algebra-related / 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Keywords
Principal Investigator
skew brace / 巡回群 / 巡回拡大 / $p$-groups of class two / ホップ・ガロワ構造 / multiple holomorph / p-groups of class two / 有限単純群 / ホップ・ガロア構造 / 正則部分群 / holomorph
  • Research Projects

    (2 results)
  • Research Products

    (7 results)
  •  Research on skew braces: on their similarities and differences with groupsPrincipal Investigator

    • Principal Investigator
      TSANG SINYI (TSANGCINDY)
    • Project Period (FY)
      2024 – 2028
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Ochanomizu University
  •  Existence problems in Hopf-Galois structures and skew bracesPrincipal Investigator

    • Principal Investigator
      TSANG SINYI
    • Project Period (FY)
      2021 – 2022
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0201:Algebra, geometry, analysis, applied mathematics,and related fields
    • Research Institution
      Ochanomizu University

All 2023 2022

All Journal Article Presentation

  • [Journal Article] Finite $p$-groups of class two with a large multiple holomorph2023

    • Author(s)
      Caranti A.、Tsang Cindy (Sin Yi)
    • Journal Title

      Journal of Algebra

      Volume: 617 Pages: 476-499

    • DOI

      10.1016/j.jalgebra.2022.11.013

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20319
  • [Journal Article] Hopf-Galois structures on cyclic extensions and skew braces with cyclic multiplicative group2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Journal Title

      Proceedings of the American Mathematical Society, Series B

      Volume: 9 Issue: 36 Pages: 377-392

    • DOI

      10.1090/bproc/138

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-21K20319
  • [Presentation] Regular subgroups in the holomorph, fixed point free pairs of homomorphisms, and factorizations of groups2023

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Hopf Algebras & Galois Module Theory
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20319
  • [Presentation] Characterization of the type of Hopf-Galois structures on cyclic extensions2022

    • Author(s)
      TSANG SIN YI
    • Organizer
      Hopf Algebras and Galois Module Theory 2022
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20319
  • [Presentation] Non-abelian simple groups which can occur as the additive group of a skew brace with solvable multiplicative group2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Oberwolfach Mini-Workshop: Skew Braces and the Yang-Baxter Equation
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20319
  • [Presentation] Finite $p$-groups of class two with a very large multiple holomorph2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Hopf Algebras & Galois Module Theory
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20319
  • [Presentation] Characterization of the type of Hopf-Galois structures on cyclic extensions2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Hopf Algebras & Galois Module Theory
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K20319

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi