• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

HAYASHI Chuichiro  林 忠一郎

ORCIDConnect your ORCID iD *help
… Alternative Names

林 忠一郎  ハヤシ チユウイチロウ

Less
Researcher Number 20281321
Other IDs
Affiliation (Current) 2025: 日本女子大学, 理学部, 教授
Affiliation (based on the past Project Information) *help 2010 – 2018: 日本女子大学, 理学部, 教授
2007 – 2009: Japan Women's University, 理学部, 准教授
2003 – 2006: 日本女子大学, 理学部, 助教授
2001: 日本女子大学, 理学部, 講師
1998 – 2000: 学習院大学, 理学部, 助手
1996: 学習院大学, 理学部, 助手
Review Section/Research Field
Principal Investigator
Geometry / Geometry
Keywords
Principal Investigator
結び目理論 / 自明結び目 / デーン手術 / 位相幾何学 / 幾何学 / 結び目 / クロムウェル変形 / アーク表示 / 上界 / ファンダメンタル曲面 … More / ノーマル曲面 / ライデマイスター変形 / 本質的ラミネーション / 種数1橋数1結び目 / ヒーガード分解 / 2橋結び目 / ラミネーション / カンドル彩色 / カンドル / 交差点数 / rectangular diagram / R変形 / merge変形 / exchange変形 / arc表示 / エクスチェンジ / マージ / レクタンギュラー表示 / グリッド表示 / Reldemeister変形 / レンズ空間 / fundamental曲面 / normal曲面 / 3-manifold / vertex surface / Q-theory / normal surface / triangulation / non-orientable surface / lens space / fundamental surface / 絡み目射影図 / トポロジー / トロイダル多様体 / 可約多様体 / 2橋絡み目 / 可約3次元多様体 / トンネル数1絡み目 / コライズ / 分離絡み目 / 閉組み紐 / トンネル数 / 絡み目 / 双曲構造 / ヘゴール分解 / 圧縮不可能曲面 / 橋数2結び目 / トーラス結び目 / ダブルトーラス結び目 / タングル分解 / アフィンラミネーション / スタビライズド / キャンセラブル / 橋表示 / 3次元多様体 / 衛星結び目 / 核結び目 / 弱可約分解 / 強既約分解 / 種数1橋数1分解 / ケーブル予想 / 平行 / タングル Less
  • Research Projects

    (8 results)
  • Research Products

    (42 results)
  •  Decision of triviality of knots and search for unknotting moves using quandlesPrincipal Investigator

    • Principal Investigator
      Hayashi Chuichiro
    • Project Period (FY)
      2016 – 2018
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Geometry
    • Research Institution
      Japan Women's University
  •  An upper bound for the number of elementary moves needed for unknotting an arc-presentation of the trivial knotPrincipal Investigator

    • Principal Investigator
      Hayashi Chuichiro
    • Project Period (FY)
      2013 – 2015
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Geometry
    • Research Institution
      Japan Women's University
  •  The number of Cromwell moves needed for unknotting an arc-presentation of the trivial knotPrincipal Investigator

    • Principal Investigator
      HAYASHI Chuichiro
    • Project Period (FY)
      2010 – 2012
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Geometry
    • Research Institution
      Japan Women's University
  •  The number of Reidemeister moves needed for connecting two link diagrams representing the same link.Principal Investigator

    • Principal Investigator
      HAYASHI Chuichiro
    • Project Period (FY)
      2006 – 2009
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Geometry
    • Research Institution
      Japan Women's University
  •  トンネル数1の絡み目に沿ったデーン手術Principal Investigator

    • Principal Investigator
      林 忠一郎
    • Project Period (FY)
      2003 – 2005
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Geometry
    • Research Institution
      Japan Women's University
  •  本質的タングル分解を持つ結び目に沿った整数的デーン手術Principal Investigator

    • Principal Investigator
      林 忠一郎
    • Project Period (FY)
      2000 – 2001
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      Geometry
    • Research Institution
      Japan Women's University
      Gakushuin University
  •  種数1橋数1結び目に沿ったデーン手術Principal Investigator

    • Principal Investigator
      林 忠一郎
    • Project Period (FY)
      1998 – 1999
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      Geometry
    • Research Institution
      Gakushuin University
  •  ファイバー結び目とケ-ブリング予想Principal Investigator

    • Principal Investigator
      林 忠一郎
    • Project Period (FY)
      1996
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      Geometry
    • Research Institution
      Gakushuin University

All 2018 2016 2015 2014 2013 2012 2011 2010 2009 2007 2006 2005 2004 Other

All Journal Article Presentation

  • [Journal Article] Rectangular Seifert circles and arcs system2014

    • Author(s)
      Tatuo Ando, Chuichiro Hayashi and Miwa Hayashi
    • Journal Title

      Journal of Knot Thoery and its Ramifications

      Volume: 23 Issue: 08 Pages: 1450041-1450041

    • DOI

      10.1142/s0218216514500412

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25400100
  • [Journal Article] Realizing exterior Cromwell moves on rectangular diagrams by Reidemeister moves2014

    • Author(s)
      Tatsuo Ando, Chuichiro Hayashi and Yuki Nishikawa
    • Journal Title

      Journal of Knot Thoery and its Ramifications

      Volume: 23 Issue: 05 Pages: 1450023-1450023

    • DOI

      10.1142/s0218216514500230

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25400100
  • [Journal Article] Canonical forms for operation tables of finite connected quandles2013

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Communications in Algebra

      Volume: 41 Issue: 9 Pages: 3340-3349

    • DOI

      10.1080/00927872.2012.685532

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25400100
  • [Journal Article] Unknotting rectangular diagrams of the trivial knot by exchangge moves2013

    • Author(s)
      Chuichiro Hayashi and Sayaka Yamada
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: 22 Issue: 11 Pages: 1-12

    • DOI

      10.1142/s0218216513500673

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25400100
  • [Journal Article] Unknotting number and number Reidemeister moves needed for unlinking2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi, Tahl Nowik
    • Journal Title

      Topology and its Applications

      Volume: 159 Issue: 5 Pages: 1467-1474

    • DOI

      10.1016/j.topol.2012.01.008

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] On linear n-colorings for knots2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi and Kanako Oshiro
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Vol.21, No.14 Issue: 14 Pages: 13-13

    • DOI

      10.1142/s0218216512501234

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101, KAKENHI-PROJECT-23840040
  • [Journal Article] Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves.2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: 21 Issue: 10 Pages: 1-13

    • DOI

      10.1142/s021821651250099x

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Unknotting number and number of Reidemeister moves neededfor unlinking2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi andTahl Nowik
    • Journal Title

      Topology and its Applications

      Volume: Vol.159 Pages: 1467-1474

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Genus two Heegaard splittings of 1-genus 1-bridge knots.2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Kobe Journal of Mathematics

      Volume: 29 Pages: 45-84

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Genus two Heegaard splittings of 1-genus 1-bridge knots II2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Saitama Mathematical Journal

      Volume: 29 Pages: 25-54

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Minimal unknotting sequence of Reidemeister moves containing unmatched RII moves2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi, Minori Sawada and Sayaka Yamada
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Vol.21, No.10 Pages: 13-13

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Unknotting number and number of Reidemeister moves needed for unlinking.2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Topology and its Applications

      Volume: 159 Pages: 1467-1474

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Genus two Heegaard splittings of1-genus 1-bridge knots2012

    • Author(s)
      Hiroshi Goda and Chuchiro Hayashi
    • Journal Title

      Kobe Journal of Mathematics

      Volume: Vol. 29 Pages: 45-84

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Genus two Heegaard splittings of1-genus 1-bridge knots II2012

    • Author(s)
      Hiroshi Goda and Chuichiro Hayashi
    • Journal Title

      SaitamaMathematical Journal

      Volume: Vol. 29 Pages: 25-54

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Journal Article] Non-orientable fundamental surfaces in lens spaces2009

    • Author(s)
      Miwa Iwakura, Chuichiro Hayashi
    • Journal Title

      Topology and its Applications Vol.156

      Pages: 1753-1766

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Journal Article] Dehn surgeries on 2-bridge links which yield reducible 3-manifolds2009

    • Author(s)
      林忠一郎
    • Journal Title

      Journal of Knot Theory and its Ramifications 18

      Pages: 917-956

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Journal Article] Dehn surgeries on 2-bridge links which yield reducible 3-manifold2009

    • Author(s)
      Hiroshi Goda, Chuichiro Hayashi, Hyun-Jong Song
    • Journal Title

      Journal of Knot Theory and its Ramifications Vol.18

      Pages: 917-956

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Journal Article] Non-orientable fundamental surfaces in lens spaces2009

    • Author(s)
      岩倉美和、林忠一郎
    • Journal Title

      Topology and its Applications 156

      Pages: 1753-1766

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Journal Article] Non-orientable fundamental surfaces in lens spaces2009

    • Author(s)
      Miwa Iwakura, Chuichiro Hayashi
    • Journal Title

      Topology and its Applications 156巻

      Pages: 1753-1766

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Journal Article] A lower bound for the number of Reidemeister moves for unknotting2006

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Journal of knot Theory and its Ramifications vol.15 No.3

      Pages: 313-326

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] A lower bound for the number of Reidemeister moves for unknotting2006

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Journal of Knot Theory and its Ramifications Vol.15

      Pages: 313-325

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Journal Article] The number of Reidemeister moves for splitting a link2005

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Mathematische Annalen

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] Essential laminations and branched surfaces in the exteriors of links2005

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Japanese Journal of Mathematics 31

      Pages: 25-96

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] The number of Reidemeister moves for splitting a link2005

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Mathematische Annalen 332

      Pages: 239-252

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] The number of Vogel operations to deform a link diagram to a closed braid.2005

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      TOKYO Journal of Mathematics 28

      Pages: 299-307

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] A criterion for satellite 1-genus 1-bridge knots2004

    • Author(s)
      Chuichiro Hayashi(共著)
    • Journal Title

      Proceedings of the American Mathematical Society Vol.132 No.11

      Pages: 3449-3456

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] 1-genus 1-bridge splittings for knots2004

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Osaka Journal of Mathematics Vol.41 No.2

      Pages: 371-426

    • Data Source
      KAKENHI-PROJECT-15740047
  • [Journal Article] Canonical forms for operation tables of finite connected quandles

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Communications in Algebra

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] 2-spheres in Morse positions with respect to the open-book decompositon of the 3-sphere2018

    • Author(s)
      Chuichiro Hayashi
    • Organizer
      Geometry and Topology of 3-manifolds
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K05157
  • [Presentation] S3 の open-book decomposition に関して Morse の位置にある球面(続き)2018

    • Author(s)
      林忠一郎
    • Organizer
      研究集会「Geometric Topology of low dimensions」
    • Data Source
      KAKENHI-PROJECT-16K05157
  • [Presentation] The Number of Reidemeister movesneeded for connecting two diagrams of a knot2016

    • Author(s)
      Chuichiro Hayashi
    • Organizer
      Joint Symposium 2016, Ewha Womans University, Japan Women’s University andOchanomizu University for the promotion and research for women in science
    • Place of Presentation
      Ehwa Womans University, Seoul, Korea
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K05157
  • [Presentation] とあるカンドル彩色のさがし方2015

    • Author(s)
      林忠一郎
    • Organizer
      拡大KOOKセミナー
    • Place of Presentation
      神戸大学
    • Year and Date
      2015-08-21
    • Data Source
      KAKENHI-PROJECT-25400100
  • [Presentation] ライデマイスター変形に代えて2014

    • Author(s)
      林忠一郎
    • Organizer
      多様体のトポロジーの展望
    • Place of Presentation
      東京大学(東京都・目黒区)
    • Year and Date
      2014-11-30
    • Data Source
      KAKENHI-PROJECT-25400100
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラムIII2012

    • Author(s)
      林忠一郎
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんかテンブス館
    • Year and Date
      2012-09-03
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラム I2012

    • Author(s)
      西川友紀(話者)、林忠一郎
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんか テンブス館
    • Year and Date
      2012-09-03
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラムII2012

    • Author(s)
      山田さやか(話者)、林忠一郎
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんかテンブス館
    • Year and Date
      2012-09-03
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves2011

    • Author(s)
      山田さやか(話者)、澤田実、林忠一郎、 林美和
    • Organizer
      研究集会「結び 目の数学IV」
    • Place of Presentation
      早稲田大学
    • Year and Date
      2011-12-27
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] CowritheとReidemeister変形の回数-torusknotsへの応用2010

    • Author(s)
      林忠一郎(話者)、林美和(話者)
    • Organizer
      結び目の数理セミナーKnottingNagoya
    • Place of Presentation
      名古屋工業大学
    • Year and Date
      2010-06-06
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] CowritheとReidemeister変形の回数-torus knotsへの応用2010

    • Author(s)
      林忠一郎
    • Organizer
      Knotting Nagoya
    • Place of Presentation
      名古屋工業大学
    • Year and Date
      2010-06-06
    • Data Source
      KAKENHI-PROJECT-22540101
  • [Presentation] Miwa Iwakura, Q-fundamental surfaces in lens spaces2007

    • Author(s)
      Chuichiro Hayashi, Miwa Iwakura
    • Organizer
      Knotting Mathematics and Art: conference in Low Dimensional Topology and Mathematical Art
    • Place of Presentation
      University of South Florida, Tampa
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Presentation] Q-fundamental surfaces in lens spaces2007

    • Author(s)
      Chuichiro Hayashi, Miwa Iwakura
    • Organizer
      Knotting Mathematics and Art : Conference in Low Dimensional Topology and Mathematical Art
    • Place of Presentation
      University of South Florida フロリダ州、アメリカ合衆国
    • Year and Date
      2007-11-02
    • Data Source
      KAKENHI-PROJECT-18540100
  • [Presentation] Q-fundamental surfaces in lens spaces2007

    • Author(s)
      岩倉 美和、林忠 一郎
    • Organizer
      Knotting Mathematics and Art
    • Place of Presentation
      University of South Florida
    • Year and Date
      2007-11-02
    • Data Source
      KAKENHI-PROJECT-18540100

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi