• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

KOIKE Kenji  小池 健二

ORCIDConnect your ORCID iD *help
Researcher Number 20362056
Other IDs
Affiliation (Current) 2025: 山梨大学, 大学院総合研究部, 教授
Affiliation (based on the past Project Information) *help 2017 – 2020: 山梨大学, 大学院総合研究部, 准教授
2014 – 2016: 山梨大学, 総合研究部, 准教授
2012 – 2013: 山梨大学, 教育学研究科(研究院), 准教授
2010 – 2011: 山梨大学, 教育人間科学部, 准教授
2007 – 2008: University of Yamanashi, 教育人間科学部, 准教授
2005 – 2006: 山梨大学, 教育人間科学部, 助教授
2004: 山梨大学, 教育人間科学部, 講師
Review Section/Research Field
Principal Investigator
Algebra / Basic Section 11010:Algebra-related
Keywords
Principal Investigator
テータ関数 / 超幾何関数 / Kummer曲面 / K3曲面 / アーベル多様体 / 代数幾何 / 特殊関数 / モノドロミー / 代数多様体 / Schwarz写像 … More / Riemann面 / 三角群 / Calabi-Yau多様体 / 代数曲線 / Weyl群 / Abel多様体 / modular多様体 / ワイル群 / モジュラー多様体 / クンマー曲面 / HessianK3曲面 / 楕円曲面 / 塩田-猪瀬構造 / 3次曲面 / IV型領域 / 点配置 / AGM / Picar曲線 / 算術幾何平均 Less
  • Research Projects

    (6 results)
  • Research Products

    (13 results)
  • Co-Researchers

    (1 People)
  •  Special functions and algebraic geometryPrincipal Investigator

    • Principal Investigator
      KOIKE Kenji
    • Project Period (FY)
      2018 – 2020
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      University of Yamanashi
  •  Study of algebraic curves, K3 surfaces and Abelian varietiesPrincipal Investigator

    • Principal Investigator
      KOIKE Kenji
    • Project Period (FY)
      2015 – 2017
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      University of Yamanashi
  •  families of K3 surfaces parameterized by Hermitian half spacesPrincipal Investigator

    • Principal Investigator
      KOIKE Kenji
    • Project Period (FY)
      2012 – 2014
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      University of Yamanashi
  •  The moduli space of cubic surfaces via Hessian K3 surfacesPrincipal Investigator

    • Principal Investigator
      KOIKE Kenji
    • Project Period (FY)
      2010 – 2011
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      University of Yamanashi
  •  Algebro-geometrical and number-theoretical study of Abelian Varieties and its applications to cryptographyPrincipal Investigator

    • Principal Investigator
      KOIKE Kenji
    • Project Period (FY)
      2007 – 2008
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      University of Yamanashi
  •  Abel多様体の周辺Principal Investigator

    • Principal Investigator
      小池 健二
    • Project Period (FY)
      2004 – 2006
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      University of Yamanashi

All 2020 2018 2015 2013 2011 2008 2007 Other

All Journal Article Presentation

  • [Journal Article] Picard-Vessiot groups of Lauricella's hypergeometric systems EC and Calabi-Yau varieties arising integral representations2020

    • Author(s)
      Goto Yoshiaki、Koike Kenji
    • Journal Title

      Journal of the London Mathematical Society

      Volume: - Issue: 1 Pages: 22-42

    • DOI

      10.1112/jlms.12311

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17K14149, KAKENHI-PROJECT-18K03236
  • [Journal Article] The Fermat septic and the Klein quartic as moduli spaces of hypergeometric Jacobians2018

    • Author(s)
      Kenji Koike
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 47 Issue: 1 Pages: 109-141

    • DOI

      10.14492/hokmj/1520928062

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-15K04815
  • [Journal Article] Hessian K3 surfaces of non-Sylvester type2011

    • Author(s)
      Kenji Koike
    • Journal Title

      Journal of Algebra

      Volume: vol.330 Pages: 388-403

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22740007
  • [Journal Article] An extended Gauss AGM and corresponding Picard modular forms2008

    • Author(s)
      小池健二、志賀弘典
    • Journal Title

      Journal of Number Theory Vol.128

      Pages: 2097-2126

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19740006
  • [Journal Article] An extended Gauss AGM and corresponding Picard modular forms2008

    • Author(s)
      小池健二、志賀弘典
    • Journal Title

      Journal of Number Theory 128

      Pages: 2097-2126

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19740006
  • [Journal Article] Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean2007

    • Author(s)
      Kenji Koike, Hironori Shiga
    • Journal Title

      Journal of number theory Vol. 124, Issue 1

      Pages: 123-141

    • Data Source
      KAKENHI-PROJECT-16740009
  • [Journal Article] Elliptic K3 surfaces admitting a Shioda-Inose structure

    • Author(s)
      Kenji Koike
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli

      Volume: (掲載予定)

    • NAID

      110009595203

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22740007
  • [Presentation] Cyclic heptagonal curves and hypergeometric periods2015

    • Author(s)
      Kenji Koike
    • Organizer
      Curves, Moduli and Integrable Systems
    • Place of Presentation
      津田塾大学(東京都小平市)
    • Year and Date
      2015-02-17
    • Data Source
      KAKENHI-PROJECT-24540038
  • [Presentation] A Picard modular 4-fold and the Weyl group W(E6)2013

    • Author(s)
      小池健二
    • Organizer
      第7回玉原特殊多様体研究集会
    • Place of Presentation
      東京大学玉原国際セミナーハウス(群馬県沼田市)
    • Data Source
      KAKENHI-PROJECT-24540038
  • [Presentation] Jacobian Kummer surfaces of degree 82013

    • Author(s)
      小池健二
    • Organizer
      第2回京都保型形式研究集会
    • Place of Presentation
      京都大学(京都府京都市)
    • Data Source
      KAKENHI-PROJECT-24540038
  • [Presentation] 楕円的K3曲面と塩田-猪瀬構造2011

    • Author(s)
      小池健二
    • Organizer
      第5回玉原特殊多様体研究集会
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Year and Date
      2011-09-06
    • Data Source
      KAKENHI-PROJECT-22740007
  • [Presentation] 楕円的K3曲面と塩田-猪瀬構造2011

    • Author(s)
      小池健二
    • Organizer
      第5回玉原特殊多様体研究集会
    • Place of Presentation
      東京大学玉原国際セミナーハウス(群馬県沼田市)
    • Year and Date
      2011-09-06
    • Data Source
      KAKENHI-PROJECT-22740007
  • [Presentation] Jacobian Kummer曲面と32本の直線

    • Author(s)
      小池健二
    • Organizer
      第6回玉原特殊多様体研究集会
    • Place of Presentation
      東京大学玉原国際セミナーハウス(群馬県)
    • Data Source
      KAKENHI-PROJECT-24540038
  • 1.  後藤 良彰
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi