• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Miyazaki Takafumi  宮崎 隆史

ORCIDConnect your ORCID iD *help
Researcher Number 20706725
Other IDs
Affiliation (Current) 2025: 群馬大学, 大学院理工学府, 准教授
Affiliation (based on the past Project Information) *help 2018 – 2024: 群馬大学, 大学院理工学府, 准教授
2016 – 2017: 群馬大学, 大学院理工学府, 助教
Review Section/Research Field
Principal Investigator
Basic Section 11010:Algebra-related / Algebra
Keywords
Principal Investigator
単数方程式 / 指数型不定方程式 / 代数的無理数の有理近似 / 対数一次形式の理論 / ベキ剰余理論 / Bakerの手法 / ラマヌジャン・ナゲール型方程式 / 一般化されたフェルマー方程式 / 部分空間定理 / ピライ型方程式 … More / 連立ぺル方程式 / Ramanujan-Nagell 方程式 / 線形回帰数列 / 寺井予想 / 連立ペル方程式 / ディオファントスの組 / Jesmanowicz予想 Less
  • Research Projects

    (3 results)
  • Research Products

    (25 results)
  •  Effective rational approximation to algebraic irrationals and exponential Diophantine equationsPrincipal Investigator

    • Principal Investigator
      宮崎 隆史
    • Project Period (FY)
      2024 – 2028
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Gunma University
  •  Algebraic and analytic study on exponential equations related to Fermat's equationPrincipal Investigator

    • Principal Investigator
      Miyazaki Takafumi
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Gunma University
  •  Diophantine problems related to polynomial-exponential equationsPrincipal Investigator

    • Principal Investigator
      Miyazaki Takafumi
    • Project Period (FY)
      2016 – 2019
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      Gunma University

All 2024 2023 2022 2021 2020 2019 2018 2017 2016

All Journal Article Presentation

  • [Journal Article] Number of solutions to a special type of unit equations in two unknowns2024

    • Author(s)
      Takafumi Miyazaki, Istvan Pink
    • Journal Title

      American Journal of Mathematics

      Volume: 146 Issue: 2 Pages: 295-369

    • DOI

      10.1353/ajm.2024.a923236

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Journal Article] Number of solutions to a special type of unit equations in two unknowns, II2024

    • Author(s)
      Takafumi Miyazaki, Istvan Pink
    • Journal Title

      Research in Number Theory

      Volume: 10 Issue: 2

    • DOI

      10.1007/s40993-024-00524-7

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Journal Article] A purely exponential Diophantine equation in three unknowns2021

    • Author(s)
      Miyazaki Takafumi、Sudo Masaki、Terai Nobuhiro
    • Journal Title

      Periodica Mathematica Hungarica

      Volume: 84 Issue: 2 Pages: 287-298

    • DOI

      10.1007/s10998-021-00405-x

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K03553, KAKENHI-PROJECT-18K03247
  • [Journal Article] Application of cubic residue theory to an exponential equation concerning Eisenstein triples2020

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie

      Volume: 62(110) Pages: 305-312

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] Coincidence between two binary recurrent sequences of polynomials arising from Diophantine triples2019

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 印刷中

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] On Terai's exponential equation with two finite integer parameters2019

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Notes Number Theory Discrete Mathematics

      Volume: 25 Issue: 1 Pages: 84-107

    • DOI

      10.7546/nntdm.2019.25.1.84-107

    • NAID

      120006861274

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] A study on the exponential Diophantine equation a^x+(a+b)^y=b^z2019

    • Author(s)
      Takafumi Miyazaki, Nobuhiro Terai
    • Journal Title

      Publicationes Mathematicae Debrecen

      Volume: 印刷中

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] On the Diophantine equation ((c+1)m^2+1)^x+(cm^2-1)^y=(am)^z2018

    • Author(s)
      E. Kizildere, T. Miyazaki, G. Gokhan
    • Journal Title

      Turkish Journal of Mathematics

      Volume: 42 Issue: 5 Pages: 2690-2698

    • DOI

      10.3906/mat-1803-14

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] On the number of extensions of a Diophantine triple2018

    • Author(s)
      Mihai Cipu, Yasutsugu Fujita, Takafumi Miyazaki
    • Journal Title

      International Journal of Number Theory

      Volume: 14 Issue: 03 Pages: 899-917

    • DOI

      10.1142/s1793042118500549

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557, KAKENHI-PROJECT-16K05079
  • [Journal Article] Contributions to some conjectures on a ternary exponential Diophantine equation2018

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Acta Arithmetica

      Volume: 186.1 Issue: 1 Pages: 1-36

    • DOI

      10.4064/aa8656-2-2018

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] The regularity of Diophantine quadruples2017

    • Author(s)
      Yasutsugu Fujita, Takafumi Miyazaki
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 印刷中 Issue: 6 Pages: 3803-3831

    • DOI

      10.1090/tran/7069

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-16K17557, KAKENHI-PROJECT-16K05079
  • [Journal Article] A polynomial-exponential equation related to the Ramanujan-Nagell equation,2017

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      The Ramanujan Journal

      Volume: 印刷中 Issue: 3 Pages: 601-613

    • DOI

      10.1007/s11139-016-9878-x

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Journal Article] On the diophantine equation 1+x^a+z^b=y^n2016

    • Author(s)
      Attila Berczes, Lajos Hajdu, Takafumi Miyazaki, Istvan Pink
    • Journal Title

      Journal of Number Theory and Combinatorics

      Volume: 8 Pages: 145-154

    • Peer Reviewed / Acknowledgement Compliant / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Presentation] Number of solutions to a special type of unit equations in two unknowns III2024

    • Author(s)
      Takafumi Miyazaki, Istvan Pink
    • Organizer
      Diophantine Analysis and Related Fields 2024
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] Number of solutions to a special type of Pillai’s equation2023

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      25th Central European Number Theory Conference
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] Number of solutions to a special type of Pillai’s equation2023

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      解析的整数論とその周辺(2023年度RIMS共同研究(公開型))
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] Number of solutions to a special type of unit equations in two unknowns II2022

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Number Theory Conference 2022
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] Number of solutions to a special type of unit equations in two unknowns II2022

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      NUMBER THEORY SEMINAR (Number Theory Research Group University of Debrecen)
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] 三変数の純指数型不定方程式に関するScottの定理について2021

    • Author(s)
      宮崎 隆史
    • Organizer
      2021大分整数論研究集会
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] Number of solutions to some purely exponential Diophantine equation in three unknowns2021

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      2021年度RIMS共同研究 (公開型) 解析的整数論とその周辺
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] 純指数型不定方程式a^x+b^y=c^zの解の個数について2021

    • Author(s)
      宮崎 隆史
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20K03553
  • [Presentation] Application of cubic residue theory to a special type of unit equation concerning Eisenstein triples2019

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Diophantine Analysis and Related Fields 2019
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Presentation] Coincidence between two sequences of polynomials arising from Diophantine triples2018

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Conference on Diophantine m-tuples and Related Problems II
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Presentation] On Terai’s exponential equation with two finite integer parameters2018

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Analytic Number Theory and Related Areas
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557
  • [Presentation] Extension of Dem’janenko’s classical work on a quadratic Diophantine equation and its applications2017

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Diophantine Analysis and Related Fields 2017
    • Place of Presentation
      日本大学(東京都・千代田区)
    • Year and Date
      2017-01-09
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17557

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi