• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Irie Go  入江 豪

ORCIDConnect your ORCID iD *help
Researcher Number 20914831
Other IDs
Affiliation (Current) 2025: 東京理科大学, 工学部情報工学科, 准教授
2025: 日本電信電話株式会社NTTコミュニケーション科学基礎研究所, メディア情報研究部, 特別研究員
Affiliation (based on the past Project Information) *help 2023 – 2024: 東京理科大学, 工学部情報工学科, 准教授
Review Section/Research Field
Principal Investigator
Basic Section 61010:Perceptual information processing-related
Except Principal Investigator
Medium-sized Section 60:Information science, computer engineering, and related fields
Keywords
Principal Investigator
超音波 / 深層学習 / 深度推定
Except Principal Investigator
人物姿勢推定 / コンピュータビジョン / パターン認識 / 音響信号
  • Research Projects

    (2 results)
  • Research Products

    (7 results)
  • Co-Researchers

    (2 People)
  •  BGM音源のみを計測に用いた人物姿勢推定に関する研究

    • Principal Investigator
      五十川 麻理子
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 60:Information science, computer engineering, and related fields
    • Research Institution
      Keio University
  •  Indoor depth estimation based on ultrasound and deep learningPrincipal Investigator

    • Principal Investigator
      入江 豪
    • Project Period (FY)
      2023 – 2025
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 61010:Perceptual information processing-related
    • Research Institution
      Tokyo University of Science

All 2024 2023

All Journal Article Presentation Patent

  • [Journal Article] Bivariate Mixup for Contact Point Localization Based on Piezoelectric Sound Acquisition2024

    • Author(s)
      米澤 祥吾、谷口 行信、入江 豪
    • Journal Title

      電子情報通信学会論文誌D 情報・システム

      Volume: J107-D Issue: 4 Pages: 155-165

    • DOI

      10.14923/transinfj.2023PDP0016

    • ISSN
      1880-4535, 1881-0225
    • Year and Date
      2024-04-01
    • Language
      Japanese
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-23K11154
  • [Patent] 学習装置、深度推定装置、深度推定モデルの生成方法、深度推定方法、及びプログラム2023

    • Inventor(s)
      木村 昭悟、入江 豪、本間 純平
    • Industrial Property Rights Holder
      日本電信電話株式会社、学校法人東京理科大学
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2023-089663
    • Filing Date
      2023
    • Data Source
      KAKENHI-PROJECT-23K11154
  • [Presentation] Active Acoustic Sensing for Object Recognition2024

    • Author(s)
      Seiya Kodama, Shogo Yonezawa, Go Irie
    • Organizer
      International Workshop on Frontiers of Computer Vision
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K11154
  • [Presentation] Seeing through Sounds: Visual Scene Understanding from Acoustic Signals2023

    • Author(s)
      Go Irie
    • Organizer
      International Workshop on Symbolic-Neural Learning
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K11154
  • [Presentation] 圧電収音に基づく接触点位置推定のためのBivariate Mixup2023

    • Author(s)
      米澤 祥吾,谷口 行信,入江 豪
    • Organizer
      画像センシングシンポジウム
    • Data Source
      KAKENHI-PROJECT-23K11154
  • [Presentation] 超音波反響による屋内デプス推定2023

    • Author(s)
      本間 純平,木村 昭悟,入江 豪
    • Organizer
      画像センシングシンポジウム
    • Data Source
      KAKENHI-PROJECT-23K11154
  • [Presentation] アクティブ音響センシングによるアピアランスによらない物体識別2023

    • Author(s)
      小玉 星弥,米澤 祥吾,入江 豪
    • Organizer
      画像センシングシンポジウム
    • Data Source
      KAKENHI-PROJECT-23K11154
  • 1.  五十川 麻理子 (60963238)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  青木 義満 (00318792)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi