• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

AOKI Noboru  青木 昇

ORCIDConnect your ORCID iD *help
… Alternative Names

青木 昇

Less
Researcher Number 30183130
Other IDs
Affiliation (based on the past Project Information) *help 2016: 立教大学, 理学部, 教授
2003 – 2009: 立教大学, 理学部, 教授
1995 – 2002: 立教大学, 理学部, 助教授
1991 – 1994: DEPT. MATH., RIKKYO UNIV., LECTURER, 理学部, 講師
1988: 立教大学, 理学部, 助手
Review Section/Research Field
Principal Investigator
Algebra / Algebra
Except Principal Investigator
Algebra / Algebra / 代数学・幾何学
Keywords
Principal Investigator
楕円曲線 / アーベル多様体 / ヤコビ和 / ガウス和 / L関数 / Tate-Shafarevich group / elliptic curve / Fermat curve / Jacobi sum / テイト・シャファレヴィッチ群 … More / リーマンゼータ関数 / フェルマー曲線 / ゼータ関数 / 虚数乗法論 / 円分体 / イデアル類群 / Groebner basis / Riemann zeta function / prehomogenous vector space / Gross conjecture / トーリックイデアル / 保型形式 / トーリック環 / Tate-Safarevich群 / トーリック多様体 / Eisenstein級数 / 局所密度 / 二次形式 / グレブナー基底 / 概均質ベクトル空間 / Fermat曲線 / Tate-Shaferevich群 / Gross予想 / Cassels pairing / Selmer group / congruent number / Gauss sum / フェルマ-曲線 / テイト・シャファレビッチ群 / カッセルズ対 / セルマー群 / 合同数 / リーマン予想 / モーデル・ヴェイユ群 / ファレイ数列 / ディオファンタス方程式 / Farey数列 / p進ガンマ関数 / Davenpot和 / Riemann予想 / Hecke L関数 / 代数的サイクル / フェルマー曲面 / 数論 / ヤコビ多様体 / 三次曲面 / 三次曲線 / モ-デル・ヴェイユ格子 / モ-デル・ヴェイユ群 / セルマ-群 / 代数体 … More
Except Principal Investigator
モーデル・ヴェイユ格子 / 楕円曲面 / Mordell-Weil Lattices / 有理楕円曲面 / 整点 / 特異ファイバー / Maass wave forms / テイト・シャファレヴィチ群 / 整数点 / 楕円曲線 / Fermat曲線 / 概均質ベクトル空間 / 代数曲線 / モ-デル・ヴェイユ格子 / ワイヤストラス変換 / 3次曲面と27直線 / ハイト公式 / 楕円ファイブレーション / 3次曲面と27直線 / ピカール数 / ネロン・セヴェリ群 / 高種数曲線ファイブレーション / K3曲面 / 乗法的卓越族 / 高種数ファイブレーション / ネロン・セヴェリ格子 / フェルマー曲面 / ガロア表現 / 代数幾何学 / Painleve equations / Gauss sums / Sphere packing problem / Kummer surfaces / Rational elliptic surfaces / K3 surfaces / コレスポンデンス / サイクル / 楕円パラメータ / ソリトン方程式 / パンルヴェ方程式 / ガウス和 / 球の詰め込み問題 / クンマー曲面 / K3曲面 / Hodge Conjecture / Tate-Shafarevich group / abc-theorem / DS-triples / Singular fibre / Elliptic Surface / Shafarevich Correspondence / 極大な特異ファイバー / Davenport-Stothers3対 / DS-トリプル / ホッジ予想 / abc-定理 / DSトリプル / シャファレヴィチ対応 / b-function / prehomogeneous vector space / multiple L-values / prime geodesic theorem / Selberg zeta functions / Jacobi forms / modular forms / Gamma行列 / 弱球等質空間 / Weierstrass部分空間 / 不定符号4元数環 / モジュラー群 / セルバーグゼータ関数 / 概均質ゼータ関数 / converse theorem / zeta regularization / double shuffle relation / 多重L-値 / Shimura 対応 / Selberg zeta 関数 / Hodge予想 / Selberg跡公式 / b-関数 / 多重L値 / 素測地線定理 / Maass波形式 / Selberg zeta関数 / Jacobi形式 / 保型形式 / Hodge Cycles / Tate-Shafarevich Group / Elliptic Modular Surfaces / Codes / Integral Points / Abelian Varieties / Elliptic Curves / 不変式論 / 球のつめこみ / コード / Davenportの限界 / ABC定理 / アーベル多様体 / ホッジ・サイクル / 楕円モジュラー曲面 / 符号 / アーペル多様体 / Affineanalogues / Relative Trace Formake / Involutions / Linear Algelvaic Groups / Symmetric Pairs / L関数の零点 / 簡約代数群 / 対合 / 構成可能層 / 超局所化 / 超幾何関数 / L-関数 / シュバレー群 / 代数群 / 制限ルート系 / 佐武図式 / 標数2の体上の代数群 / 対称多様体 / 標数2の体 / アフィン類似 / 相対跡公式 / ラングランズ対応 / 線型代数群 / 対称対 / INTERSECTION THEORY / UNITS / SPLITTING FIELDS / JACOBIAN VARIETIES / MODELL-WEIL LATTICES / 関数体 / 交点理論 / 単数 / 分解体 / ヤコビ多様体 / sphere packing / Mardell-Weil lattices / Fermat curves / curves on a surface / relative deformation / projective spaces and hyperquadrics / maximal rationally connected fibration / Fano manifolds / Monoge-Ampere方程式 / 曲面孤立特異点 / 反射層 / 相対双対層 / モデユライ理論 / 楕円モデュラ-型式 / 一般Hecke作用素 / 一般型多様体 / KaGG"HHhlenーEinstein計量 / Hecke作用素 / 分類理論 / 有界性定理 / 有理連結性 / 球体充てん / Q上の楕円曲線 / MordellーWeil格子 / 位相型の有限性 / 相対変形理論 / 極大有理連結ファイブレ-ション / 極大有理連結部分多様体 / 球体充填 / Mordell-Weil格子 / 曲面上の曲線族 / 相対変形 / 射影空間・二次超曲面 / 極大有理連結ファイブレーション / Fano多様体 / 局所ゼータ関数 / フェルマ曲線 / 生成元 / モーデル・ヴェイユ群 / ネロン・セベリ群 / 種数 / ランク / ゼータ関数 / 消滅ルート(vanishing root) / 楕円曲線の優美族 / 高種数の代数曲線 Less
  • Research Projects

    (17 results)
  • Research Products

    (36 results)
  • Co-Researchers

    (21 People)
  •  Studies of Mordell-Weil Lattices

    • Principal Investigator
      SHIODA Tetsuji
    • Project Period (FY)
      2013 – 2016
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  Studies on arithmetic problems on abelian varietiesPrincipal Investigator

    • Principal Investigator
      AOKI Noboru
    • Project Period (FY)
      2006 – 2009
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  Mordell-Weil Lattices and Cycles on Algebraic Surfaces

    • Principal Investigator
      SHIODA Tetsuji
    • Project Period (FY)
      2005 – 2007
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  Shafarevich Correspondence and Mordell-Weil Lattices

    • Principal Investigator
      SHIODA Tetsuji
    • Project Period (FY)
      2003 – 2004
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      RIKKYO UNIVERSITY
  •  Study on interrelations among quadratic forms, automorphic forms and related various zeta-functionsPrincipal Investigator

    • Principal Investigator
      AOKI Noboru
    • Project Period (FY)
      2003 – 2005
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  Mordell-Weil Lattices of Elliptic Curves and Abelian Varieties

    • Principal Investigator
      SHIODA Tetsuji
    • Project Period (FY)
      2000 – 2002
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      RIKKYO UNIVERSITY
  •  Study of zeta functions related to Jacobi forms and Siegel modular forms

    • Principal Investigator
      ARAKAWA Tsuneo
    • Project Period (FY)
      2000 – 2002
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      RIKKYO UNIVERSITY
  •  SYMMETRIC PAIRS

    • Principal Investigator
      UZAWA Tooru
    • Project Period (FY)
      1998 – 2000
    • Research Category
      Grant-in-Aid for Scientific Research (B).
    • Research Field
      Algebra
    • Research Institution
      RIKKYO UNIVERSITY
  •  MORDELL-WEIL LATTICES OF JACOBIAN VARIETIES

    • Principal Investigator
      SHIODA Tetsuji
    • Project Period (FY)
      1997 – 1999
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      RIKKYO UNIVERSITY
  •  Rational points on algebraic curves and its application to number theoryPrincipal Investigator

    • Principal Investigator
      AOKI Noboru
    • Project Period (FY)
      1997 – 1998
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      RIKKYO UNIVERSITY
  •  モ-デル・ヴェイユ格子の理論と種々の応用

    • Principal Investigator
      塩田 徹治
    • Project Period (FY)
      1996
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  アーベル多様体の算術的理論の研究Principal Investigator

    • Principal Investigator
      青木 昇
    • Project Period (FY)
      1995
    • Research Category
      Grant-in-Aid for General Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  楕円曲線の算術的理論の研究Principal Investigator

    • Principal Investigator
      青木 昇
    • Project Period (FY)
      1994
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  L関の特殊値の研究Principal Investigator

    • Principal Investigator
      青木 昇
    • Project Period (FY)
      1993
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      Algebra
    • Research Institution
      Rikkyo University
  •  モーデルヴェイユ格子の研究

    • Principal Investigator
      SHIODA Tetuji
    • Project Period (FY)
      1992
    • Research Category
      Grant-in-Aid for General Scientific Research (C)
    • Research Field
      代数学・幾何学
    • Research Institution
      Rikkyo University
  •  THEORY OF ALGEBRAIC VARIETIES AND APPLICATIONS TO RELATED TOPICS

    • Principal Investigator
      MIYAOKA Yoichi
    • Project Period (FY)
      1989 – 1991
    • Research Category
      Grant-in-Aid for General Scientific Research (C)
    • Research Field
      代数学・幾何学
    • Research Institution
      RIKKYO UNIVERSITY
      Tokyo Metropolitan University
  •  数論的幾何と代数的サイクルの研究

    • Principal Investigator
      塩田 徹治
    • Project Period (FY)
      1988
    • Research Category
      Grant-in-Aid for General Scientific Research (C)
    • Research Field
      代数学・幾何学
    • Research Institution
      Rikkyo University

All 2010 2008 2007 2006 2005 2004 2003

All Journal Article

  • [Journal Article] Correction and supplement to the paper "Generators of the Neron-Severi group of a Fermat surface"2010

    • Author(s)
      N. Aoki, T. Shioda
    • Journal Title

      Comment. Math. Univ. Sancti Pauli 59巻

    • NAID

      110007689201

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On supersingular cyclic quotients of Fermat curves2008

    • Author(s)
      N. Aoki
    • Journal Title

      Comment. Math. Univ. Sancti Pauli 57巻

      Pages: 65-90

    • NAID

      110007689213

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On supersingular cyclic quotients of Fermat curves2008

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 57

      Pages: 65-90

    • NAID

      110007689213

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On the zeta function of some cyclic quotients of Fermat curves2008

    • Author(s)
      N. Aoki
    • Journal Title

      Comment. Math. Univ. Sancti Pauli 57巻

      Pages: 163-185

    • NAID

      110007689217

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On the zeta function of some cyclic quotients of Fermat curves2008

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 57巻

      Pages: 163-185

    • NAID

      110007689217

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On the zeta funcion of some cyclic quotients of Fermat curves2008

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 57

      Pages: 163-185

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On supersingular cyclic quotients of Fermat curves2008

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 57巻

      Pages: 65-90

    • NAID

      110007689213

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] [10]On the solvebility of a certain linear Diophantine equation with a parity condition2007

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.St.Pauli 56

      Pages: 71-96

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17540044
  • [Journal Article] On the solvability of a certain Diophantine equation with a parity condition2007

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 56巻

      Pages: 71-96

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On the Solvability of a Certain Diophantine Equation with a Parity Condition2007

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 56

      Pages: 71-96

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On the solvebility of a certain linear Diophantine equation with a parity condition2007

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment. Math. Univ. St. Pauli 56

      Pages: 71-96

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17540044
  • [Journal Article] On the solvability of a certain linear Diophantine equation with a parity condition2007

    • Author(s)
      N. Aoki
    • Journal Title

      Comment. Math. Univ. Sancti Pauli 56巻

      Pages: 71-96

    • NAID

      110007689222

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] Torsion points on CM abelian varieties2006

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 55巻

      Pages: 207-229

    • NAID

      110007689244

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] Survey of Gross's conjecture and its refinements2006

    • Author(s)
      N. Aoki, J. Lee
    • Journal Title

      9巻

      Pages: 31-34

    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] Torsion points on CM abelian varieties2006

    • Author(s)
      N. Aoki
    • Journal Title

      Comment. Math. Univ. Sancti Pauli 55巻

      Pages: 207-229

    • NAID

      110007689244

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] Torsion Points on CM Abelian Varieties2006

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 55

      Pages: 207-229

    • NAID

      110007689244

    • Data Source
      KAKENHI-PROJECT-18540055
  • [Journal Article] On Tate's refinement for a conjecture of Gross and its generalization2005

    • Author(s)
      青木昇(Noboru Aoki)
    • Journal Title

      J.Theorie des Nombres de Bordeaux. (To appear)

    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Tokyo Journal of Mathematics 27

      Pages: 313-335

    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 53

      Pages: 145-168

    • NAID

      110007689265

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      青木昇(Noboru Aoki)
    • Journal Title

      Tokyo J.Math. 27

      Pages: 313-335

    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Acta Arithmetica 112

      Pages: 209-227

    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Commentarii Mathematici Universitatis Sancti Pauli 53

      Pages: 145-168

    • NAID

      110007689265

    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      N.Aoki
    • Journal Title

      Tokyo J. Math. 27

      Pages: 313-335

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Tokyo J.Math. 27

      Pages: 313-335

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      N.Aoki
    • Journal Title

      Tokyo J.Math. 27

      Pages: 313-335

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Acta Arithmetica 112

      Pages: 209-227

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • NAID

      110007689265

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] On Tate's refinement for a conjecture of Gross and its generalization2004

    • Author(s)
      N.Aoki
    • Journal Title

      J. Theorie des Nombres de Bordeaux 16

      Pages: 457-486

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      N.Aoki
    • Journal Title

      Acta Arithmetica 112

      Pages: 209-227

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Tokyo J.Math.

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      N.Aoki
    • Journal Title

      Comment. Math. Univ. Sancti Pauli 53

      Pages: 145-168

    • NAID

      110007689265

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] On Tate's refinement for a conjecture of Gross and its generalization2004

    • Author(s)
      N.Aoki
    • Journal Title

      J.Theorie des Nombres de Bordeaux 16

      Pages: 457-486

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Acta Arithmetica

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      N.Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 53

      Pages: 145-168

    • NAID

      110007689265

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540049
  • [Journal Article] On the generalized Gross-Tate conjecture for elementary abelian 2-extensions2003

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 52

      Pages: 197-206

    • NAID

      110007689278

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • [Journal Article] On the generalized Gross-Tate conjecture for elementary abelian 2-extensions2003

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • NAID

      110007689278

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-15540048
  • 1.  SHIODA Tetuji (00011627)
    # of Collaborated Projects: 10 results
    # of Collaborated Products: 0 results
  • 2.  FUJII Akio (50097226)
    # of Collaborated Projects: 6 results
    # of Collaborated Products: 0 results
  • 3.  SATO Fumihiro (20120884)
    # of Collaborated Projects: 4 results
    # of Collaborated Products: 0 results
  • 4.  河井 壮一 (40062624)
    # of Collaborated Projects: 3 results
    # of Collaborated Products: 0 results
  • 5.  木田 祐司 (30113939)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 6.  MIYAOKA Yoichi (50101077)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 7.  栗原 将人 (40211221)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 8.  中島 晴久 (90145657)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 9.  佐々井 崇雄 (00094269)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 10.  辻 元 (30172000)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 11.  笹倉 頌夫 (20087026)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 12.  卜部 東介 (70145655)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 13.  荻上 絋一 (10087025)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 14.  UZAWA Tooru (40232813)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 15.  YAMADA Yuuji (40287917)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 16.  KUROKI Gen (10234593)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 17.  HASEGAWA Kouji (30208483)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 18.  ARAKAWA Tsuneo (60097219)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 19.  ENDO Mikihiko (40062616)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 20.  OHSUGI Hidefumi (80350289)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 21.  KAKEI Saburo (60318798)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi