• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Koike Takayuki  小池 貴之

ORCIDConnect your ORCID iD *help
Researcher Number 30784706
Other IDs
Affiliation (Current) 2025: 大阪公立大学, 大学院理学研究科, 准教授
Affiliation (based on the past Project Information) *help 2022 – 2023: 大阪公立大学, 大学院理学研究科, 准教授
2022: 大阪公立大学, 理学(系)研究科(研究院), 准教授
2020 – 2021: 大阪市立大学, 大学院理学研究科, 准教授
2019: 大阪市立大学, 大学院理学研究科, 講師
2018: 大阪市立大学, 大学院理学研究科, 特任講師
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related / 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Keywords
Principal Investigator
半正直線束 / 正則葉層構造 / レビ平坦 / 部分多様体近傍 / K3曲面 / レビ平坦超曲面 / 上田理論 / 多重劣調和関数 / 複素力学系 / q-多重劣調和関数 … More / エルミート計量 / 正則直線束 / 平坦直線束 / 半正正則直線束 / 大域的開部分多様体 / 部分多様体 / 標準ケーラー計量 Less
  • Research Projects

    (4 results)
  • Research Products

    (43 results)
  • Co-Researchers

    (1 People)
  •  半正直線束とq-多重劣調和関数の複素幾何Principal Investigator

    • Principal Investigator
      小池 貴之
    • Project Period (FY)
      2023 – 2025
    • Research Category
      Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Osaka Metropolitan University
  •  正則葉層構造の複素力学系と非消滅問題Principal Investigator

    • Principal Investigator
      小池 貴之
    • Project Period (FY)
      2023 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Osaka Metropolitan University
  •  Semi-positive holomorphic line bundles and complex dynamicsPrincipal Investigator

    • Principal Investigator
      Koike Takayuki
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Osaka Metropolitan University
      Osaka City University
  •  Global open submanifolds of compact complex manifoldsPrincipal Investigator

    • Principal Investigator
      Koike Takayuki
    • Project Period (FY)
      2018 – 2019
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0201:Algebra, geometry, analysis, applied mathematics,and related fields
    • Research Institution
      Osaka City University

All 2023 2022 2021 2020 2019 2018

All Journal Article Presentation

  • [Journal Article] A gluing construction of projective K3 surfaces2022

    • Author(s)
      Koike Takayuki、Uehara Takato
    • Journal Title

      Epijournal de Geometrie Algebrique

      Volume: Volume 6 Pages: 1-15

    • DOI

      10.46298/epiga.2022.volume6.8504

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K03544, KAKENHI-PROJECT-20K14313
  • [Journal Article] On the complement of a hypersurface with flat normal bundle which corresponds to a semipositive line bundle2021

    • Author(s)
      T. Koike
    • Journal Title

      Math. Ann.

      Volume: online Issue: 1-2 Pages: 291-313

    • DOI

      10.1007/s00208-021-02199-2

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Journal Article] Linearization of transition functions of a semi-positive line bundle along a certain submanifold2021

    • Author(s)
      T. Koike
    • Journal Title

      Ann. Inst. Fourier (Grenoble)

      Volume: 71 Issue: 5 Pages: 2237-2271

    • DOI

      10.5802/aif.3439

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Journal Article] On minimal singular metrics of line bundles whose stable base loci admit holomorphic tubular neighborhoods2020

    • Author(s)
      G. Hosono, T. Koike
    • Journal Title

      Ann. Fac. Sci. Toulouse Math. (6)

      Volume: Volume XXIX Facicle 1 Pages: 149-175

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Journal Article] Plurisubharmonic functions on a neighborhood of a torus leaf of a certain class of foliations2019

    • Author(s)
      Takayuki Koike
    • Journal Title

      Forum Math.

      Volume: 31 Issue: 6 Pages: 1457-1466

    • DOI

      10.1515/forum-2018-0228

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      日本数学会年会
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      葉層構造論シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K03119
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2023

    • Author(s)
      T. Koike
    • Organizer
      HAYAMA Symposium on Complex Analysis in Several Variables XXIV
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K03119
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      複素幾何における葉層と力学系の諸問題
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      日本数学会年会
    • Data Source
      KAKENHI-PROJECT-23K03119
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2023

    • Author(s)
      T. Koike
    • Organizer
      HAYAMA Symposium on Complex Analysis in Several Variables XXIV
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2023

    • Author(s)
      T. Koike
    • Organizer
      SCV, CR geometry and Dynamics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K03119
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2023

    • Author(s)
      T. Koike
    • Organizer
      SCV, CR geometry and Dynamics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K03119
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      葉層構造論シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] A gluing construction of projective K3 surfaces2023

    • Author(s)
      T. Koike
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Delbar cohomology of the complement of a semi-positive anticanonical divisor of a compact surface2023

    • Author(s)
      T. Koike
    • Organizer
      複素幾何における葉層と力学系の諸問題
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K03119
  • [Presentation] Projective K3 surfaces which contain Levi-flat hypersurfaces2022

    • Author(s)
      T. Koike
    • Organizer
      Complex Analytic Geometry
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Projective K3 surfaces which contain Levi-flat hypersurfaces2022

    • Author(s)
      T. Koike
    • Organizer
      葉層構造論シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2022

    • Author(s)
      T. Koike
    • Organizer
      Complex Geometry and Dynamical Systems
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Semipositive line bundles and holomorphic foliations2021

    • Author(s)
      T. Koike
    • Organizer
      Dynamics, SCV and CR geometry
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2021

    • Author(s)
      T. Koike
    • Organizer
      日本数学会年会
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] 半正直線束の変換関数の固定部分近傍における線形化について2021

    • Author(s)
      小池貴之
    • Organizer
      日本数学会年会函数論分科会
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Semipositive line bundles and holomorphic foliations2021

    • Author(s)
      T. Koike
    • Organizer
      葉層構造シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Linearization of transition functions of a semi-positive line bundle along a certain submanifold2021

    • Author(s)
      T. Koike
    • Organizer
      Grauert theory and recent complex geometry
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] Holomorphic foliation associated with a semi-positive class of numerical dimension one2021

    • Author(s)
      T. Koike
    • Organizer
      2021年度多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] 半正直線束の変換関数の固定部分近傍における線形化について2020

    • Author(s)
      小池貴之
    • Organizer
      第63回 函数論シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] On the complement of a hypersurface with flat normal bundle which corresponds to a semipositive line bundle2020

    • Author(s)
      T. Koike
    • Organizer
      複素幾何シンポジウム(金沢) 2020
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14313
  • [Presentation] K3曲面とその幾何学的構成2019

    • Author(s)
      小池貴之
    • Organizer
      ENCOUNTERwithMATHEMATICS
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Complex analysis on a neighborhood of a complex submanifold and its applications2019

    • Author(s)
      小池貴之
    • Organizer
      Some topics in several complex variables
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Complex analysis on a neighborhood of a complex submanifold and its applications2019

    • Author(s)
      小池貴之
    • Organizer
      Sinica-NCTS Geometry Seminar
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] On a neighborhood of an elliptic curve and a gluing construction of K3 surfaces2019

    • Author(s)
      小池貴之
    • Organizer
      Mini-workshop on Complex Geometry
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] On a neighborhood of an elliptic curve and a gluing construction of K3 surfaces2019

    • Author(s)
      小池貴之
    • Organizer
      Complex Geometry 2019 Tokyo
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Gluing construction of K3 surfaces and complex analysis on a neighborhood of a complex submanifold2019

    • Author(s)
      小池貴之
    • Organizer
      城崎代数幾何シンポジウム
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Minimal singular metrics on effective nef line bundles and neighborhoods of the stable base loci2019

    • Author(s)
      小池貴之
    • Organizer
      Singular Metrics in Complex Kahler Geometry
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Points of the Period domain which correspond to K3 surfaces constructed by gluing2019

    • Author(s)
      小池貴之
    • Organizer
      日本数学会年会函数論分科会
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] K3曲面の貼り合わせ構成2019

    • Author(s)
      小池貴之
    • Organizer
      淡路島幾何学研究集会2020
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Gluing construction of non-projective K3 surfaces and holomorphic tubular neighborhoods of elliptic curves2018

    • Author(s)
      小池貴之
    • Organizer
      complex analysis special seminar
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] On the neighborhood of a torus leaf and dynamics of holomorphic foliations2018

    • Author(s)
      小池貴之
    • Organizer
      複素力学系研究とその発展
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Arnol'd's type theorem on a neighborhood of a cycle of rational curves2018

    • Author(s)
      小池貴之
    • Organizer
      葉層構造の幾何学とその応用
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] Gluing construction of non-projective K3 surfaces and holomorphic tubular neighborhoods of elliptic curves2018

    • Author(s)
      小池貴之
    • Organizer
      多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • [Presentation] On a higher codimensional analogue of Ueda theory and its applications2018

    • Author(s)
      小池貴之
    • Organizer
      東工大幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21024
  • 1.  UEHARA Takato
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi