• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

IKEDA Akishi  池田 暁志

ORCIDConnect your ORCID iD *help
Researcher Number 40755162
Other IDs
Affiliation (Current) 2025: 城西大学, 理学部, 教授
Affiliation (based on the past Project Information) *help 2020 – 2024: 城西大学, 理学部, 准教授
2019: 大阪大学, 理学研究科, 特任講師
2016 – 2018: 東京大学, カブリ数物連携宇宙研究機構, 特任研究員
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related / Geometry
Except Principal Investigator
Basic Section 11010:Algebra-related / Basic Section 11020:Geometry-related
Keywords
Principal Investigator
安定性条件 / フロベニウス多様体 / 三角圏 / Hurwitz空間 / ルート系 / gentle代数 / 周期写像 / ミラー対称性 / Calabi-Yau代数 / フロべニウス多様体 … More / 一般化ルート系 / 不変式 / カラビ・ヤウ圏 / 圏論的エントロピー / 周期積分 / ブリッジランド安定性条件 / カラビ・ヤウ代数 / 導来圏 / 二次微分 / カラビ-ヤウ代数 / Bridgeland安定性条件 / リーマン面上の二次微分 / 三角圏の安定性条件 / Frobenius多様体 / 安定性条件の空間 … More
Except Principal Investigator
可積分系 / 原始型式 / elliptic root system / primitive form / higher homotopy groups / highest weight modules / periods / 周期領域のホモトピー型 / 一般化ルート系 / 周期写像と周期領域 / 安定性条件 / Drinfeld-Sokorov / 楕円アルティングン / integrable hierarchy / Eisennstein 級数 / 楕円積分 / 表現論 / 無限次元リー環 / ハイパボリック ルート系 / 高次ホモトピー類 / 非キャンセラティブ / ホモトピー群 / 無限次元リー館 / 周期写像 / $K(\pi,1)$-conjecture / 可積分構造 / 楕円周期領域 / モジュラー群作用 / 楕円ルート系 / 楕円アルティンモノイド / 楕円アルティン群 / 楕円リー環 / 周期領域 / 原始形式 / vertex operator algebra / primitive forms / hyperbolic root systems / second homotopy classees / non-cancellative monoid / cuspidal root system / integrablerepresentation / hyperbolic root system / elliptic Artin monoid / elliptic Artin group / elliptic Lie algebra Less
  • Research Projects

    (4 results)
  • Research Products

    (20 results)
  • Co-Researchers

    (6 People)
  •  Root systems and Lie algebras associated with period maps for primitive forms

    • Principal Investigator
      斎藤 恭司
    • Project Period (FY)
      2023 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Kyoto University
  •  周期と安定性条件の対応によるホモロジー的ミラー対称性の精密な理解Principal Investigator

    • Principal Investigator
      池田 暁志
    • Project Period (FY)
      2022 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Josai University
  •  Global Study of Primitive Forms

    • Principal Investigator
      Saito Kyoji
    • Project Period (FY)
      2018 – 2022
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Kyoto University
      The University of Tokyo
  •  Study of a categorification of period integrals and Frobenius structures on the spaces of stability conditionsPrincipal Investigator

    • Principal Investigator
      IKEDA Akishi
    • Project Period (FY)
      2016 – 2021
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Geometry
    • Research Institution
      Josai University
      Osaka University
      The University of Tokyo

All 2023 2022 2021 2020 2019 2018 2017 2016

All Journal Article Presentation

  • [Journal Article] A Frobenius manifold for l-Kronecker quiver2022

    • Author(s)
      Ikeda Akishi、Otani Takumi、Shiraishi Yuuki、Takahashi Atsushi
    • Journal Title

      Letters in Mathematical Physics

      Volume: 112 Issue: 1

    • DOI

      10.1007/s11005-022-01506-5

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17588, KAKENHI-PROJECT-16H06337, KAKENHI-PROJECT-19K14531, KAKENHI-PROJECT-21H04994
  • [Journal Article] MASS GROWTH OF OBJECTS AND CATEGORICAL ENTROPY2021

    • Author(s)
      Ikeda, Akishi
    • Journal Title

      Nagoya mathematical journal

      Volume: 244 Pages: 136-157

    • DOI

      10.1017/nmj.2020.9

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H01116
  • [Presentation] Bimoulds, scrambling operators and singularly perturbed systems2023

    • Author(s)
      Akishi Ikeda
    • Organizer
      Various problems in microlocal analysis and asymptotic analysis
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03294
  • [Presentation] Flat structures from generalized root systems of type A in genus zero2023

    • Author(s)
      Akishi Ikeda
    • Organizer
      Workshop on Mirror symmetry and Related Topics, Kyoto 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03294
  • [Presentation] Calabi-Yau algebras and canonical bundles2022

    • Author(s)
      Akishi Ikeda
    • Organizer
      Preprojective algebras and Calabi-Yau algebras Online School
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] Arcs on surfaces vs modules over algebras2021

    • Author(s)
      Akishi Ikeda
    • Organizer
      Infinite Analysis 21 Workshop Around Cluster Algebras
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] Arcs on surfaces vs modules over algebras2020

    • Author(s)
      IKeda, Akishi
    • Organizer
      Infinite Analysis 21 Workshop ``Around Cluster Algebras''
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H01116
  • [Presentation] Gentle代数の2重次数付きCalabi-Yau完備化と曲面の幾何学2020

    • Author(s)
      池田曉志
    • Organizer
      東京名古屋代数セミナー
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] $q$-stability conditions and C^*-equivariant quantum cohomology for the local P^12019

    • Author(s)
      池田曉志
    • Organizer
      Enhancing representation theory, noncommutative algebra and geometry
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] quadratic differentials and q-stability conditions on CY- X categories2019

    • Author(s)
      池田曉志
    • Organizer
      Workshop on quadratic differentials and q-stability conditions
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] Bigraded Calabi-Yau completions of topological Fukaya categories and q-stability conditions2019

    • Author(s)
      池田曉志
    • Organizer
      Interaction Between Algebraic Geometry and QFT
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] q-stability conditions on CY- X categories2019

    • Author(s)
      池田曉志
    • Organizer
      Stability conditions, Frobenius manifold and Mirror symmetry
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] On classification of simply-laced generalized root systems of type A via marked bordered surfaces2019

    • Author(s)
      池田曉志
    • Organizer
      Mirror Symmetry and Related Topics, 2019
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] q-stability conditions and q-quadratic differentials2018

    • Author(s)
      池田曉志
    • Organizer
      Mirror Symmetry for Fano Manifolds and Related Topics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] q-stability conditions and C^*-equivariant coherent sheaves on canonical bundles2018

    • Author(s)
      池田曉志
    • Organizer
      城崎代数幾何学シンポジウム2018
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] q-安定性条件の空間とq-二次微分の空間について2018

    • Author(s)
      池田曉志
    • Organizer
      ミラー対称性の諸相 2018
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] 安定性条件の空間, 超平面配置, 周期2017

    • Author(s)
      池田曉志
    • Organizer
      研究集会「不変式・超平面配置と平坦構造」
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] Spaces of stability conditions on the Calabi-Yau categories associated with quivers2017

    • Author(s)
      池田曉志
    • Organizer
      Geometry, Representation Theory, and Mathematical Physics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] ADE型箙の安定性条件の空間とCoxeter KZ接続について2017

    • Author(s)
      池田曉志
    • Organizer
      複素領域における関数方程式とその周辺
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17588
  • [Presentation] Frobenius structures on Hurwitz spaces and confluent KZ equations2016

    • Author(s)
      池田曉志
    • Organizer
      Categorical and analytic invariants in Algebraic geometry 3
    • Place of Presentation
      Higher School of Economics, Moscow, Russia
    • Year and Date
      2016-09-12
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17588
  • 1.  Saito Kyoji (20012445)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 2.  柏原 正樹 (60027381)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 3.  高橋 篤史 (50314290)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 4.  桑垣 樹 (60814621)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 5.  社本 陽太 (50823647)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 6.  齋藤 隆大 (50844841)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi