• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Oi Masao  大井 雅雄

ORCIDConnect your ORCID iD *help
Researcher Number 40868171
Other IDs
Affiliation (based on the past Project Information) *help 2020 – 2024: 京都大学, 白眉センター, 特定助教
Review Section/Research Field
Principal Investigator
Basic Section 11010:Algebra-related
Keywords
Principal Investigator
局所Langlands対応 / 超尖点表現 / p進簡約群 / Deligne-Lusztig理論 / Swan 導手 / beyond endoscopy / 相対Langlands対応 / Swan導手 / エンドスコピー / Harish-Chandra指標 / 正則超尖点表現 / Langlands関手性
  • Research Projects

    (2 results)
  • Research Products

    (30 results)
  •  Generalization of Deligne-Lusztig theory and local Langlands correspondencePrincipal Investigator

    • Principal Investigator
      大井 雅雄
    • Project Period (FY)
      2024 – 2027
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Kyoto University
  •  Study of the Langlands functoriality via an explicit local Langlands correspondencePrincipal Investigator

    • Principal Investigator
      Oi Masao
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Kyoto University

All 2024 2023 2022 2021 2020

All Journal Article Presentation

  • [Journal Article] On Swan exponents of symmetric and exterior square Galois representations2024

    • Author(s)
      Henniart Guy、Oi Masao
    • Journal Title

      Rad Hrvatske akademije znanosti i umjetnosti. Matematicke znanosti

      Volume: 28 Pages: 151-184

    • DOI

      10.21857/yvjrdcde6y

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Journal Article] Iwahori-Hecke algebra and unramified local L-functions2023

    • Author(s)
      Oi Masao、Sakamoto Ryotaro、Tamori Hiroyoshi
    • Journal Title

      Mathematische Zeitschrift

      Volume: 303 Issue: 3

    • DOI

      10.1007/s00209-023-03214-9

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K14287, KAKENHI-PROJECT-23K12947
  • [Journal Article] Geometric $L$-packets of Howe-unramified toral supercuspidal representations2023

    • Author(s)
      Chan Charlotte、Oi Masao
    • Journal Title

      Journal of the European Mathematical Society

      Volume: - Issue: 4 Pages: 1465-1526

    • DOI

      10.4171/jems/1396

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Journal Article] Simple supercuspidal L-packets for quasi-split classical groups2022

    • Author(s)
      Masao Oi
    • Journal Title

      Memoirs of the American Mathematical Society

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Journal Article] Depth-preserving property of the local Langlands correspondence for quasi-split classical groups in large residual characteristic2022

    • Author(s)
      Oi Masao
    • Journal Title

      manuscripta mathematica

      Volume: - Issue: 3-4 Pages: 529-562

    • DOI

      10.1007/s00229-022-01397-9

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Journal Article] Geometric L-packets of Howe-unramified toral supercuspidal representations2022

    • Author(s)
      Charlotte Chan and Masao Oi
    • Journal Title

      Journal of the European Mathematical Society

      Volume: -

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Journal Article] Local Langlands Correspondence for Regular Supercuspidal Representations of GL(n)2020

    • Author(s)
      Oi Masao, Tokimoto Kazuki
    • Journal Title

      International Mathematics Research Notices

      Volume: 2021, 3 Issue: 3 Pages: 2007-2073

    • DOI

      10.1093/imrn/rnaa197

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On the functorial behavior of Swan conductors of Galois representations2023

    • Author(s)
      大井雅雄
    • Organizer
      愛媛大学代数セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Characterization of supercuspidal representations via Harish-Chandra characters2023

    • Author(s)
      大井雅雄
    • Organizer
      RIMS研究集会「Recent developments in representation theory and related topics」
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Several recent topics on the local Langlands conjecture2023

    • Author(s)
      Masao Oi
    • Organizer
      NTU Mathematics Colloquium
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Swan conductors of local Galois representations and their functorial lifts2023

    • Author(s)
      Masao Oi
    • Organizer
      Number Theory in Tokyo
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On explicit local Jacquet--Langlands correspondence for regular supercuspidal representations2023

    • Author(s)
      Masao Oi
    • Organizer
      Representations of reductive p-adic groups, L-functions and relative matters: a conference in honor of Guy Henniart
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On explicit local Jacquet--Langlands correspondence for regular supercuspidal representations2023

    • Author(s)
      大井雅雄
    • Organizer
      RIMS研究集会「代数的整数論とその周辺2023」
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On comparison of Kaletha's and Arthur's toral supercuspidal L-packets of classical groups2023

    • Author(s)
      Masao Oi
    • Organizer
      BIRS-IASM workshop "Arthur packets"
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On explicit local Jacquet--Langlands correspondence for regular supercuspidal representations2023

    • Author(s)
      Masao Oi
    • Organizer
      The 5th Japan-Taiwan Number theory conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On B(G)-parametrization of the local Langlands correspondence2022

    • Author(s)
      Masao Oi
    • Organizer
      Mini-workshop on the geometrization of the local Langlands correspondences and related topics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] A characterizing result on supercuspidal representations2022

    • Author(s)
      Masao Oi
    • Organizer
      The 7th KTGU Mathematics Workshop for Young Researchers
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Characterization of supercuspidal representations via Harish-Chandra characters2022

    • Author(s)
      Masao Oi
    • Organizer
      Representations and Characters: Revisiting Some Aspects of the Works of Harish-Chandra and Weil
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Local Langlands correspondence for simple supercuspidal representations2022

    • Author(s)
      Masao Oi
    • Organizer
      Group, Lie and Number Theory (University of Michigan)
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Several recent topics on the supercuspidal local Langlands correspondence2021

    • Author(s)
      Masao Oi
    • Organizer
      2021 Fall POSTECH-PMI Number Theory Seminar
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Geometric L-packets of Howe-unramified toral supercuspidal representations I2021

    • Author(s)
      Masao Oi
    • Organizer
      Automorphic Project & Research Seminar
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] A recovering result of Deligne-Lusztig representations from their characters2021

    • Author(s)
      Masao Oi
    • Organizer
      The 3rd Kyoto-Hefei Workshop on Arithmetic Geometry
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] On Iwahori-Hecke algebras and local L-factors of unramified representations2021

    • Author(s)
      Masao Oi
    • Organizer
      RIMS conference: Automorphic forms, automorphic L-functions, and its related topics
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Comparison of algebraic and geometric constructions of supercuspidal representations2021

    • Author(s)
      Masao Oi
    • Organizer
      The 9th East Asia Number Theory Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Twisted endoscopic character relation for Kaletha's regular supercuspidal L-packets2021

    • Author(s)
      Masao Oi
    • Organizer
      RIMS研究集会「保型形式,保型表現,ガロア表現とその周辺」
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] 超尖点表現の代数的および幾何的構成の比較について2021

    • Author(s)
      大井雅雄
    • Organizer
      慶應代数セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] 超尖点表現に対する局所Langlands対応について2020

    • Author(s)
      大井雅雄
    • Organizer
      第65回代数学シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] 超尖点表現の代数的および幾何的構成の比較について2020

    • Author(s)
      大井雅雄
    • Organizer
      神戸整数論ミニワークショップ
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] 有限簡約群のDeligne-Lusztig表現の指標について2020

    • Author(s)
      大井雅雄
    • Organizer
      京都大学数論合同セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287
  • [Presentation] Twisted endoscopic character relation for Kaletha's regular supercuspidal L-packets2020

    • Author(s)
      Masao Oi
    • Organizer
      MIT Lie Groups Seminar
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14287

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi