• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

SHAMOTO Yota  社本 陽太

ORCIDConnect your ORCID iD *help
… Alternative Names

Shamoto Yota  社本 陽太

Less
Researcher Number 50823647
Other IDs
Affiliation (Current) 2025: 大和大学, 理工学部, 講師
Affiliation (based on the past Project Information) *help 2024: 大和大学, 理工学部, 講師
2021 – 2023: 早稲田大学, 高等研究所, 講師(任期付)
2020: 東京大学, 早稲田大学, 特任助手
2018 – 2020: 東京大学, カブリ数物連携宇宙研究機構, 特任研究員
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related / Basic Section 11010:Algebra-related / 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Except Principal Investigator
Basic Section 11010:Algebra-related / Basic Section 11020:Geometry-related
Keywords
Principal Investigator
Stokes構造 / 不確定特異点 / Mellin変換 / 頂点作用素代数 / Hodge理論 / ミラー対称性 / 微分方程式 / 微分方程式の不確定特異点 / 共形場理論 / 線形微分方程式 … More / Fourier変換 / 線形差分方程式 / 数理物理学 / 不確定特異性 / Moduli space / Fano manifolds / Mirror symmetry / Landau Ginzburg model / Hodge theory / 不確定特異型微分方程式 / Moduli理論 / Landau-Ginzburg模型 / Mirror対称性 / Langau-Ginzburg模型 / 周期積分 / Landau-Ginzburg model … More
Except Principal Investigator
可積分系 / 原始型式 / elliptic root system / primitive form / higher homotopy groups / highest weight modules / periods / 周期領域のホモトピー型 / 一般化ルート系 / 周期写像と周期領域 / 安定性条件 / Drinfeld-Sokorov / 楕円アルティングン / integrable hierarchy / Eisennstein 級数 / 楕円積分 / 表現論 / 無限次元リー環 / ハイパボリック ルート系 / 高次ホモトピー類 / 非キャンセラティブ / ホモトピー群 / 無限次元リー館 / 周期写像 / $K(\pi,1)$-conjecture / 可積分構造 / 楕円周期領域 / モジュラー群作用 / 楕円ルート系 / 楕円アルティンモノイド / 楕円アルティン群 / 楕円リー環 / 周期領域 / 原始形式 / vertex operator algebra / primitive forms / hyperbolic root systems / second homotopy classees / non-cancellative monoid / cuspidal root system / integrablerepresentation / hyperbolic root system / elliptic Artin monoid / elliptic Artin group / elliptic Lie algebra Less
  • Research Projects

    (5 results)
  • Research Products

    (18 results)
  • Co-Researchers

    (6 People)
  •  Mellin変換のStokes構造とその応用Principal Investigator

    • Principal Investigator
      社本 陽太
    • Project Period (FY)
      2024 – 2028
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Yamato University
  •  Root systems and Lie algebras associated with period maps for primitive forms

    • Principal Investigator
      斎藤 恭司
    • Project Period (FY)
      2023 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Kyoto University
  •  頂点作用素代数と不確定特異型微分方程式Principal Investigator

    • Principal Investigator
      社本 陽太
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Waseda University
      The University of Tokyo
  •  Moduli and peiods for Landau-Ginzburg modelsPrincipal Investigator

    • Principal Investigator
      Shamoto Yota
    • Project Period (FY)
      2018 – 2020
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0201:Algebra, geometry, analysis, applied mathematics,and related fields
    • Research Institution
      The University of Tokyo
  •  Global Study of Primitive Forms

    • Principal Investigator
      Saito Kyoji
    • Project Period (FY)
      2018 – 2022
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Kyoto University
      The University of Tokyo

All 2024 2023 2022 2021 2020 2019 2018

All Journal Article Presentation

  • [Journal Article] Hodge-Tate Conditions for Landau-Ginzburg Models2018

    • Author(s)
      Shamoto Yota
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 54 Issue: 3 Pages: 469-515

    • DOI

      10.4171/prims/54-3-2

    • Data Source
      KAKENHI-PROJECT-19K21021
  • [Presentation] Stokes structure of difference modules2024

    • Author(s)
      社本陽太
    • Organizer
      Workshop on Complex Geometry in Osaka 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes structure of difference modules2023

    • Author(s)
      社本陽太
    • Organizer
      Mirror Symmetry and Differential Equations
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes structure of difference modules2023

    • Author(s)
      社本陽太
    • Organizer
      超局所解析と漸近解析における諸問題
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Mirror symmetry and Stokes structure of difference modules2023

    • Author(s)
      社本陽太
    • Organizer
      Workshop on Mirror symmetry and Related Topics, Kyoto 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] 差分方程式のStokes構造について2022

    • Author(s)
      社本陽太
    • Organizer
      城崎代数幾何学シンポジウム 2022
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Mirror symmetry and Stokes structure2022

    • Author(s)
      Yota Shamoto
    • Organizer
      Geometry, Stochastics & Dynamics Celebrating 20 years of UK-Japan Winter Schools
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes structure of mild difference modules2022

    • Author(s)
      社本陽太
    • Organizer
      微分方程式の総合的研究
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes structure of mild difference modules2022

    • Author(s)
      Yota Shamoto
    • Organizer
      Stokes Structure and Mirror Symmetry
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes filtered quasi-local systems and equivariant analogue of gamma conjecture2021

    • Author(s)
      Yota Shamoto
    • Organizer
      Toda equations, parabolic Higgs bundles, and related topics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes filtered quasi-local systems and equivariant analogue of gamma conjecture2020

    • Author(s)
      Shamoto, Yota
    • Organizer
      Toda equations, parabolic Higgs bundles, and related topics (Oct.5,2021), Waseda univ.
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H01116
  • [Presentation] Stokes filtered sheaves and differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      ミラー対称性の諸相2020
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21021
  • [Presentation] Stokes filtered sheaves and differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      Algebraic differential geomerty seminor
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K21021
  • [Presentation] Stokes structure on some differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      Monodromy and hypergeometric functions
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21021
  • [Presentation] Stokes filtered sheaves and differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      ミラー対称性の諸相2020
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Stokes filtered sheaves and differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      Algebraic differential geometry seminor
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K14280
  • [Presentation] Irregular vertex algebras2019

    • Author(s)
      社本陽太
    • Organizer
      Categorical and Analytic Invariants in Algebraic Geometry VII
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21021
  • [Presentation] Hodge structures on tame compactified Landau-Ginzburg models2018

    • Author(s)
      社本陽太
    • Organizer
      Mirror Symmetry for Fano Manifolds and Related Topics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K21021
  • 1.  Saito Kyoji (20012445)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 2.  柏原 正樹 (60027381)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 3.  高橋 篤史 (50314290)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 4.  池田 暁志 (40755162)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 5.  桑垣 樹 (60814621)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 6.  齋藤 隆大 (50844841)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi