• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Zeng Feibi  曽 菲比

ORCIDConnect your ORCID iD *help
… Alternative Names

曽 菲比  ソ フィービー

Less
Researcher Number 50837680
Other IDs
Affiliation (Current) 2025: 神戸大学, 医学部附属病院, 医員
Affiliation (based on the past Project Information) *help 2020 – 2023: 神戸大学, 医学部附属病院, 医員
Review Section/Research Field
Principal Investigator
Basic Section 52040:Radiological sciences-related
Keywords
Principal Investigator
吸収補正 / in-phase Zero echo-time / 深層学習 / 減弱補正 / PET/MRI
  • Research Projects

    (1 results)
  • Research Products

    (5 results)
  •  MRIを用いた深層学習による胸部領域のPET吸収補正法の開発Principal Investigator

    • Principal Investigator
      曽 菲比
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      Kobe University

All 2023 2022 2021 2020

All Presentation

  • [Presentation] Impact of 2.5-dimensional Deep Learning for Zero-TE MR-based Attenuation Correction on Chest FDG PET/MRI: Comparison with Conventional and 2-dimensional Deep Learning Approach2023

    • Author(s)
      M. Tachibana, M. Nogami, H. Matsuo, M. Nishio, J. I. Inoue, F. Zeng, T. Kurimoto, K. Kubo, T. Murakami
    • Organizer
      European Association of Nuclear Medicine 2023(国際学会)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K16758
  • [Presentation] Zero-TE MR-based Attenuation Correction with a Deep Learning Approach: Impact of bone components on Attenuation Correction for Chest FDG PET/MRI2022

    • Author(s)
      Miho Tachibana, Munenobu Nogami, Hidetoshi Matsuo, Mizuho Nishio, Junko Inukai, Feibi Zeng, Takako Kurimoto, Kazuhiro Kubo and Takamichi Murakami
    • Organizer
      European Association of Nuclear Medicine 2022(国際学会)
    • Data Source
      KAKENHI-PROJECT-20K16758
  • [Presentation] Zero-TE vs 2-point Dixon MRI-based Attenuation Correction for Chest FDG PET/MRI with Deep Learning: Comparison of Quantitative Values on Pseudo CT and Reconstructed PET data2021

    • Author(s)
      Munenobu Nogami, Hidetoshi Matsuo, Mizuho Nishio, Miho Tachibana, Junko Inukai, Feibi Zeng, Takako Kurimoto, Kazuhiro Kubo and Takamichi Murakami
    • Organizer
      European Association of Nuclear Medicine 2021
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K16758
  • [Presentation] 胸部PET/MRIの吸収補正:別症例のCTを用いてZTEから偽CTを深層学習により作成する検討2020

    • Author(s)
      野上 宗伸、松尾 秀俊、西尾 瑞穂、曽 菲比、犬養 純子、Florian Wiesinger、Sandeep. Kaushik、栗本 貴子、久保 和広、村上 卓道
    • Organizer
      第60回日本核医学会総会
    • Data Source
      KAKENHI-PROJECT-20K16758
  • [Presentation] Zero-TE MRI-based Attenuation Correction for Chest FDG PET/MRI: A Feasibility Study of Deep Learning Approach Using Unpaired PET/CT Data2020

    • Author(s)
      Munenobu Nogami, Hidetoshi Matsuo, Mizuho Nishio, Feibi Zeng, Junko Inukai, Florian Wiesinger, Sandeep. Kaushik, Takako Kurimoto3, Kazuhiro Kubo, Takamichi Murakami
    • Organizer
      European Association of Nuclear Medicine 2020
    • Data Source
      KAKENHI-PROJECT-20K16758

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi