• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

NAKAMURA Takuji  中村 拓司

ORCIDConnect your ORCID iD *help
Researcher Number 60382024
Other IDs
Affiliation (Current) 2025: 山梨大学, 大学院総合研究部, 教授
Affiliation (based on the past Project Information) *help 2020 – 2023: 山梨大学, 大学院総合研究部, 教授
2018 – 2019: 大阪電気通信大学, 工学部, 教授
2017: 大阪電気通信大学, 工学部, 准教授
2008 – 2010: Osaka Electro-Communication University, 工学部, 准教授
2005 – 2007: 大阪電気通信大学, 工学部, 講師
Review Section/Research Field
Principal Investigator
Geometry / Basic Section 11020:Geometry-related
Keywords
Principal Investigator
結び目 / 局所変形 / 仮想結び目 / Alexander多項式 / 3次元多様体 / ねじれ多項式 / Jones多項式 / トポロジー / ファイバー結び目 / パス変形 … More / 多項式不変量 / 仮想化 / 交差交換 / 連結和 / 宮澤多項式 / サポート種数 / 4-変形 / 交差多項式 / 仮想化パス変形 / 仮想化シャープ変形 / 仮想化デルタ変形 / 仮想絡み目 / 結び目理論 / フロースパイン / シェル変形 / Conway多項式 / 溶接結び目 / 周期的結び目 / 合成結び目 / シャープ型結び目解消数 / シャープ変形 / Miyazawa多項式 / C_n変形 / 種数 / 組み紐型曲面 / 標準的曲面 / デルタ変形 / 正結び目 Less
  • Research Projects

    (4 results)
  • Research Products

    (54 results)
  • Co-Researchers

    (1 People)
  •  局所変形が与える結び目の幾何・代数の研究Principal Investigator

    • Principal Investigator
      中村 拓司
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      University of Yamanashi
  •  Studies on geometry and algebra of knots and local movesPrincipal Investigator

    • Principal Investigator
      NAKAMURA Takuji
    • Project Period (FY)
      2017 – 2020
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Geometry
    • Research Institution
      University of Yamanashi
      Osaka Electro-Communication University
  •  Studies on geometric properties and realization problems of invariants for classical knots and virtual knotsPrincipal Investigator

    • Principal Investigator
      NAKAMURA Takuji
    • Project Period (FY)
      2008 – 2010
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Geometry
    • Research Institution
      Osaka Electro-Communication University
  •  ダイアグラムの性質が与える結び目の幾何と代数的不変量の研究Principal Investigator

    • Principal Investigator
      中村 拓司
    • Project Period (FY)
      2005 – 2007
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Geometry
    • Research Institution
      Osaka Electro-Communication University

All 2023 2022 2021 2020 2019 2018 2017 2011 2010 2009 2008 2007 2006 Other

All Journal Article Presentation

  • [Journal Article] The intersection polynomials of a virtual knot II: Connected sums2023

    • Author(s)
      Higa Ryuji、Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 32 Issue: 10 Pages: 2350067-2350067

    • DOI

      10.1142/s0218216523500670

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K03621, KAKENHI-PROJECT-22K03287, KAKENHI-PROJECT-19K03466, KAKENHI-PROJECT-19K03492, KAKENHI-PROJECT-19H01788
  • [Journal Article] The intersection polynomials of a virtual knot I: Definitions and calculations2023

    • Author(s)
      Higa Rayuji、Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Indiana University Mathematics Journal

      Volume: 72 Issue: 6 Pages: 2369-2401

    • DOI

      10.1512/iumj.2023.72.9599

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K03621, KAKENHI-PROJECT-22K03287, KAKENHI-PROJECT-19K03466, KAKENHI-PROJECT-19K03492, KAKENHI-PROJECT-19H01788
  • [Journal Article] Writhe polynomials and shell moves for virtual knots and links2020

    • Author(s)
      Nakamura Takuji, Nakanishi Yasutaka, Satoh Shin
    • Journal Title

      European Journal of Combinatorics

      Volume: 84 Pages: 103033-103033

    • DOI

      10.1016/j.ejc.2019.103033

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K05265, KAKENHI-PROJECT-19K03492, KAKENHI-PROJECT-19K03466, KAKENHI-PROJECT-19H01788
  • [Journal Article] A note on coverings of virtual knots2019

    • Author(s)
      Nakamura Takuji, Nakanishi Yasutaka, Satoh Shin
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Online Ready Issue: 08 Pages: 1971002-1971002

    • DOI

      10.1142/s0218216519710020

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K05265, KAKENHI-PROJECT-19K03492, KAKENHI-PROJECT-19K03466
  • [Journal Article] The pass move is an unknotting operation for welded knots2018

    • Author(s)
      Takuji Nakamura, Yasutaka Nakanishi, Shin Satoh b, Akira Yasuhara
    • Journal Title

      Topology and its Applications

      Volume: 247 Pages: 9-19

    • DOI

      10.1016/j.topol.2018.07.005

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17K05264, KAKENHI-PROJECT-17K05265, KAKENHI-PROJECT-26287013
  • [Journal Article] Finiteness of the set of virtual knots with a given state number2018

    • Author(s)
      Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 27 Issue: 08 Pages: 1850049-1850049

    • DOI

      10.1142/s0218216518500499

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K05265, KAKENHI-PROJECT-26287013
  • [Journal Article] The palette numbers of 2-bridge knots2017

    • Author(s)
      Nakamura Takuji、Nakanishi Yasutaka、Saito Masahico、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 08 Pages: 1750047-1750047

    • DOI

      10.1142/s021821651750047x

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K05265, KAKENHI-PROJECT-26287013
  • [Journal Article] The 6- and 8-palette numbers of links2017

    • Author(s)
      Nakamura Takuji、Nakanishi Yasutaka、Saito Masahico、Satoh Shin
    • Journal Title

      Topology and its Applications

      Volume: 222 Pages: 200-216

    • DOI

      10.1016/j.topol.2017.02.080

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Journal Article] The palette numbers of torus knots2017

    • Author(s)
      Hayashi Taiki、Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 10 Pages: 1750060-1750060

    • DOI

      10.1142/s0218216517500602

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K05265, KAKENHI-PROJECT-26287013
  • [Journal Article] Braidzel surfaces for fibered knots with given Alexander polynomials2009

    • Author(s)
      中村拓司
    • Journal Title

      Kobe J.Math. 26巻

      Pages: 17-28

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Journal Article] Braidzel surfaces for fibered knots with given Alexander polynomials2009

    • Author(s)
      NAKAMURA Takuj
    • Journal Title

      Kobe Joumal of Mathematics (掲載確定)

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Journal Article] Braidzel surfaces for fibered knots with given Alexander polynomials2009

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Kobe Journal of Mathematics 26

      Pages: 17-28

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Journal Article] On the minimal genus for knots via braidzel surfaces2008

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Journal of Knot theory and its Ramifications 17

      Pages: 25-29

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17740041
  • [Journal Article] Notes on braidzel surfaces for links2007

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Proceedings of American Mathematical Society 135

      Pages: 559-567

    • Data Source
      KAKENHI-PROJECT-17740041
  • [Journal Article] On the crossing number of 2-bridge knot and the canonical genus of its Whitehead double2006

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Osaka Journal of Mathematics 43

      Pages: 609-623

    • NAID

      120004843429

    • Data Source
      KAKENHI-PROJECT-17740041
  • [Journal Article] Notes on braidzel surfaces for links

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Proceedings of American Mathematical Society (掲載受理)

    • Data Source
      KAKENHI-PROJECT-17740041
  • [Journal Article] On the minimal genus for knots via braidzel surfaces

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Journal of Knot theory and its Ramifications (掲載受理)

    • Data Source
      KAKENHI-PROJECT-17740041
  • [Journal Article] Braidzel surfaces for fibered knots with given Alexander polyno mials

    • Author(s)
      NAKAMURA Takuji
    • Journal Title

      Kobe Journal of Mathematics (掲載受理)

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17740041
  • [Presentation] 仮想結び目に対する仮想化型の局所変形について2023

    • Author(s)
      中村拓司,中西康剛,佐藤進,和田康載
    • Organizer
      農工大トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K03621
  • [Presentation] 仮想結び目の交差多項式と 4-move について2023

    • Author(s)
      中村拓司
    • Organizer
      研究集会「拡大KOOKセミナー2023」
    • Data Source
      KAKENHI-PROJECT-20K03621
  • [Presentation] 仮想結び目図式のある局所変形についての考察2022

    • Author(s)
      中村拓司・石井一平・斎藤敏夫
    • Organizer
      2022年度山梨大学トポロジーセミナー
    • Data Source
      KAKENHI-PROJECT-20K03621
  • [Presentation] 仮想結び目の交差多項式の連結和公式について2022

    • Author(s)
      中村拓司・比嘉隆二・中西康剛・佐藤進
    • Organizer
      山梨大学トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K03621
  • [Presentation] A note on the intersection polynomials of virtual knots2021

    • Author(s)
      中村拓司・比嘉隆二・中西康剛・佐藤進
    • Organizer
      山梨大学トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K03621
  • [Presentation] 仮想結び目図式のある局所変形について2020

    • Author(s)
      中村拓司
    • Organizer
      2019年度琉球結び目セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 仮想結び目の交差多項式について2020

    • Author(s)
      中村拓司・比嘉隆二・中西康剛・佐藤進
    • Organizer
      東京女子大学トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-20K03621
  • [Presentation] Flow spines and virtual knot diagrams2019

    • Author(s)
      中村拓司
    • Organizer
      Knots in Tsushima 2019
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 3次元多様体の仮想結び目図式による表示に対する彩色不変量2019

    • Author(s)
      中村拓司
    • Organizer
      拡大KOOKセミナー2019
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 仮想結び目の奇交点対から得られる不変量について2019

    • Author(s)
      中村拓司
    • Organizer
      慶應トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] On local moves among the trefoil, the figure-8, and the unknot2018

    • Author(s)
      中村拓司
    • Organizer
      2018年度琉球結び目セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 結び目およびその一般化に対する局所変形について2018

    • Author(s)
      中村拓司
    • Organizer
      大阪市立大学数学研究所談話会
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] On welded knots which can be unknotted by a single pass move2018

    • Author(s)
      中村拓司
    • Organizer
      拡大KOOKセミナー2018
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 局所変形と互いに距離1の3つの結び目2018

    • Author(s)
      中村拓司
    • Organizer
      大阪電気通信大学トポロジーセミナー;低次元多様体の幾何的性質と不変量の研究
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] Pass moves for welded knots2017

    • Author(s)
      中村拓司,中西康剛,佐藤進,安原晃
    • Organizer
      拡大KOOKセミナー2017
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 仮想結び目のある半順序について2017

    • Author(s)
      中村拓司,中西康剛,佐藤進
    • Organizer
      日本数学会秋季総合分科会トポロジー分科会
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 結び目の局所変形と多項式不変量について2017

    • Author(s)
      中村拓司
    • Organizer
      群馬大学トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 溶接結び目をほどく2017

    • Author(s)
      中村拓司
    • Organizer
      2017年度琉球結び目セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 溶接結び目に対するパス変形について2017

    • Author(s)
      中村拓司,中西康剛,佐藤進,安原晃
    • Organizer
      東京女子大学トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05265
  • [Presentation] 結び目のシャープ変形について2011

    • Author(s)
      中村拓司
    • Organizer
      日本数学会年会
    • Place of Presentation
      早稲田大学(中止により予稿集刊行にて発表扱い)
    • Year and Date
      2011-03-20
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] 結び目のシャープ変形について2011

    • Author(s)
      中村拓司
    • Organizer
      日本数学会年会(中止により予稿集刊行にて発表扱い)
    • Place of Presentation
      早稲田大学
    • Year and Date
      2011-03-20
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Notes on sharp moves for knots2011

    • Author(s)
      中村拓司
    • Organizer
      国際研究集会「The 7th East Asian School of Knots and Related Topics」
    • Place of Presentation
      広島大学
    • Year and Date
      2011-01-10
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Notes on sharp moves for knots2011

    • Author(s)
      中村拓司
    • Organizer
      国際研究集会「The 7th East Asian School of Knots and Related Topics
    • Place of Presentation
      広島大学
    • Year and Date
      2011-01-10
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Notes on sharp moves for knots2010

    • Author(s)
      中村拓司
    • Organizer
      研究集会「E-KOOKセミナー2010」
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2010-08-27
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Notes on virtual knots with trivial polynomial invariants2010

    • Author(s)
      中村拓司
    • Organizer
      国際研究集会「The Sixth East Asian School of Knots and Related Topics」
    • Place of Presentation
      Chern Institute of Mathematics, Nankai University
    • Year and Date
      2010-01-25
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] 自明な多項式不変量を持つ仮想結び目について2010

    • Author(s)
      中村拓司
    • Organizer
      日本数学会年会
    • Place of Presentation
      慶應義塾大学
    • Year and Date
      2010-03-26
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Notes on virtual knots and their polynomial invariants2010

    • Author(s)
      中村拓司
    • Organizer
      研究会「結び目と3次元多様体」
    • Place of Presentation
      慶應義塾大学
    • Year and Date
      2010-03-18
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] C_n-moves and periodic knots2009

    • Author(s)
      中村拓司
    • Organizer
      国際研究集会「Knots in Washington XXVII」
    • Place of Presentation
      George Washington university
    • Year and Date
      2009-01-11
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] C_n-moves and periodic knots2009

    • Author(s)
      中村拓司
    • Organizer
      国際研究集会「The Fifth East Asian School of Knots and Related Topics」
    • Place of Presentation
      慶州文化会館(韓国)
    • Year and Date
      2009-01-14
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Notes on virtual knots whose polynomial invariant is trivial2009

    • Author(s)
      中村拓司
    • Organizer
      研究集会「Intelligence of Low Dimensional Topology」
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2009-11-14
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] C_n-moves and periodic knots2009

    • Author(s)
      中村拓司
    • Organizer
      日本数学会年会
    • Place of Presentation
      東京大学
    • Year and Date
      2009-03-26
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] C_n-moves and periodic knots2008

    • Author(s)
      中村拓司
    • Organizer
      研究集会「北陸結び目セミナー」
    • Place of Presentation
      金沢大学サテライトキャンハス
    • Year and Date
      2008-11-14
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] Delta unknotting numbers for positive knots2008

    • Author(s)
      中村 拓司
    • Organizer
      国際研究集会「The Fourth East Asian School of Knots and Related Topics」
    • Place of Presentation
      The University of Tokyo
    • Year and Date
      2008-01-21
    • Data Source
      KAKENHI-PROJECT-17740041
  • [Presentation] C_n-moves and periodic knots2008

    • Author(s)
      中村拓司
    • Organizer
      研究集会「北陸結び目セミナー」
    • Place of Presentation
      金沢大学サテライトキャンパス
    • Year and Date
      2008-11-14
    • Data Source
      KAKENHI-PROJECT-20740047
  • [Presentation] A note on Delta unknotting numbers for positive knots2007

    • Author(s)
      中村 拓司
    • Organizer
      研究集会「結び目のトポロジーX」
    • Place of Presentation
      東京女子大学
    • Year and Date
      2007-12-24
    • Data Source
      KAKENHI-PROJECT-17740041
  • [Presentation] Pass-move and Conway polynomial2007

    • Author(s)
      中村 拓司
    • Organizer
      国際研究集会「Knotting Mathematics and Art」
    • Place of Presentation
      University of South Florida, Tampa, Florida, USA
    • Year and Date
      2007-11-03
    • Data Source
      KAKENHI-PROJECT-17740041
  • 1.  安原 晃
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi