• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Nagoshi Hirofumi  名越 弘文

ORCIDConnect your ORCID iD *help
… Alternative Names

名越 弘文  ナゴシ ヒロフミ

Less
Researcher Number 70571165
Other IDs
Affiliation (Current) 2025: 群馬大学, 大学院理工学府, 准教授
Affiliation (based on the past Project Information) *help 2021 – 2023: 群馬大学, 大学院理工学府, 准教授
2017 – 2019: 群馬大学, 大学院理工学府, 准教授
2014 – 2015: 群馬大学, 大学院理工学府, 准教授
2013: 群馬大学, 理工学研究院, 講師
Review Section/Research Field
Principal Investigator
Algebra / Basic Section 11010:Algebra-related
Keywords
Principal Investigator
ゼータ関数 / 値分布 / 関数的独立性 / 普遍性定理 / セルバーグ・クラス / 独立性 / L関数 / 差分独立性 / 類数 / 同時確率密度関数 … More / 保型形式 / 解析的数論 / ディリクレ級数 / 稠密性 / レルヒ・ゼータ関数 / L-関数 / 一般リーマン予想 / セルバーグ直交性 Less
  • Research Projects

    (3 results)
  • Research Products

    (13 results)
  •  L関数たちの集合に対する値分布とその応用Principal Investigator

    • Principal Investigator
      名越 弘文
    • Project Period (FY)
      2021 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Gunma University
  •  Study on random distribution and independence of L-functionsPrincipal Investigator

    • Principal Investigator
      Nagoshi Hirofumi
    • Project Period (FY)
      2017 – 2019
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Gunma University
  •  Study on the theory of approximation for L-functionsPrincipal Investigator

    • Principal Investigator
      Nagoshi Hirofumi
    • Project Period (FY)
      2013 – 2015
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Gunma University

All 2022 2019 2018 2016 2015 2014 Other

All Journal Article Presentation

  • [Journal Article] On a certain set of Lerch’s zeta-functions and their derivatives2019

    • Author(s)
      Hirofumi Nagoshi
    • Journal Title

      Lithuanian Mathematical Journal

      Volume: 59 Issue: 1 Pages: 111-130

    • DOI

      10.1007/s10986-019-09433-0

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K05160
  • [Journal Article] The Sato-Tate conjecture and functional differential independence of symmetric power L-functions2019

    • Author(s)
      Hirofumi Nagoshi
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2131 Pages: 71-76

    • NAID

      120006888061

    • Open Access
    • Data Source
      KAKENHI-PROJECT-17K05160
  • [Journal Article] Non-universality of the Riemann zeta function and its derivatives when σ≧12019

    • Author(s)
      Hirofumi Nagoshi, Takashi Nakamura
    • Journal Title

      Journal of Approximation Theory

      Volume: 241 Pages: 57-62

    • DOI

      10.1016/j.jat.2019.01.006

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K05160, KAKENHI-PROJECT-16K05077
  • [Journal Article] Joint value-distribution of L-functions and discrepancy of Hecke eigenvalues2016

    • Author(s)
      Hirofumi Nagoshi
    • Journal Title

      Lithuanian Mathematical Journal

      Volume: 56

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Journal Article] Hypertranscendence of L-functions for GL_m (A_Q)2016

    • Author(s)
      Hirofumi Nagoshi
    • Journal Title

      Bulletin of the Australian Mathematical Society

      Volume: 93 Issue: 3 Pages: 388-399

    • DOI

      10.1017/s000497271500129x

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Presentation] Joint probability distribution and its density function for values of the logarithms of the Riemann zeta-function and related functions2022

    • Author(s)
      名越弘文
    • Organizer
      RIMS共同研究 (公開型) 「解析的整数論とその周辺」
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K03196
  • [Presentation] The Sato-Tate conjecture and functional differential independence of symmetric power L-functions2018

    • Author(s)
      Hirofumi Nagoshi
    • Organizer
      Analytic Number Theory and Related Topics
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K05160
  • [Presentation] Zeros of the L-function attached to a cusp form and some applications of Selberg's orthogonality2015

    • Author(s)
      Hirofumi Nagoshi
    • Organizer
      Analytic Number Theory and Related Areas
    • Place of Presentation
      京都大学数理解析研究所(京都府・京都市)
    • Year and Date
      2015-11-05
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Presentation] The existence of zeros of non-primitive L-functions for SL(2,Z) in the strip 1/2 < Re s < 12015

    • Author(s)
      名越弘文
    • Organizer
      Diophantine Analysis and Related Fields 2015
    • Place of Presentation
      桐生市市民文化会館
    • Year and Date
      2015-03-07
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Presentation] 実指標 Dirichlet L関数間の同時d-普遍性と類数たちの多次元稠密性2014

    • Author(s)
      見正秀彦,名越弘文
    • Organizer
      日本数学会2014年度秋季総合分科会
    • Place of Presentation
      広島大学
    • Year and Date
      2014-09-25
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Presentation] Independence of L-functions and the Nevanlinna characteristic

    • Author(s)
      名越弘文
    • Organizer
      日本数学会2013年度秋季総合分科会
    • Place of Presentation
      愛媛大学
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Presentation] 同時普遍性を持つ任意個数の保型L関数たちの例

    • Author(s)
      名越弘文,見正秀彦
    • Organizer
      日本数学会2013年度秋季総合分科会
    • Place of Presentation
      愛媛大学
    • Data Source
      KAKENHI-PROJECT-25400005
  • [Presentation] Combining three theorems on the joint universality of L-functions

    • Author(s)
      名越弘文
    • Organizer
      日本数学会2014年度年会
    • Place of Presentation
      学習院大学
    • Data Source
      KAKENHI-PROJECT-25400005

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi