• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kobayashi Kentaro  小林 健太郎

ORCIDConnect your ORCID iD *help
Researcher Number 70756311
Affiliation (based on the past Project Information) *help 2018 – 2021: 北海道大学, 医学研究院, 客員研究員
2017 – 2018: 北海道大学, 医学研究院, 特任助教
Review Section/Research Field
Principal Investigator
Basic Section 52040:Radiological sciences-related / Radiation science
Keywords
Principal Investigator
FDG / テクスチャー解析 / 核医学 / PET / FDG PET / AI / texture解析 / ポジトロン断層法 / FDG-PET/CT / deep learning … More / radiomics / 人工知能 / 医療・福祉 / 臨床 / 病理学 / 癌 / 放射線 / 神経膠腫 / Texture解析 / FMISO / 低酸素 / 脳腫瘍 Less
  • Research Projects

    (2 results)
  • Research Products

    (6 results)
  •  A basic investigation of texture analysis and deep learning for positron emission tomographyPrincipal Investigator

    • Principal Investigator
      Kobayashi Kentaro
    • Project Period (FY)
      2019 – 2021
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      Hokkaido University
  •  FDG/FMISO PET evaluation for brain tumor with texture analysisPrincipal Investigator

    • Principal Investigator
      Kobayashi Kentaro
    • Project Period (FY)
      2017 – 2018
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Radiation science
    • Research Institution
      Hokkaido University

All 2021 2020 2018

All Journal Article Presentation

  • [Journal Article] Preoperative Texture Analysis Using 11C-Methionine Positron Emission Tomography Predicts Survival after Surgery for Glioma2021

    • Author(s)
      Manabe Osamu、Yamaguchi Shigeru、Hirata Kenji、Kobayashi Kentaro、Kobayashi Hiroyuki、Terasaka Shunsuke、Toyonaga Takuya、Magota Keiichi、Kuge Yuji、Tamaki Nagara、Shiga Tohru、Kudo Kohsuke
    • Journal Title

      Diagnostics

      Volume: 11 Issue: 2 Pages: 189-189

    • DOI

      10.3390/diagnostics11020189

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K17127
  • [Journal Article] Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images2020

    • Author(s)
      Kawakami Masashi、Hirata Kenji、Furuya Sho、Kobayashi Kentaro、Sugimori Hiroyuki、Magota Keiichi、Katoh Chietsugu
    • Journal Title

      Frontiers in Medicine

      Volume: 7 Pages: 616746-616746

    • DOI

      10.3389/fmed.2020.616746

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K17127
  • [Journal Article] A convolutional neural network-based system to classify patients using FDG PET/CT examinations2020

    • Author(s)
      Kawauchi Keisuke、Furuya Sho、Hirata Kenji、Katoh Chietsugu、Manabe Osamu、Kobayashi Kentaro、Watanabe Shiro、Shiga Tohru
    • Journal Title

      BMC Cancer

      Volume: 20 Issue: 1 Pages: 227-227

    • DOI

      10.1186/s12885-020-6694-x

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K17127
  • [Presentation] A simplified brain-shaped phantom to evaluate O-15 image quality of digital photon counting PET-CT2020

    • Author(s)
      Kenji Hirata, Keiichi Magota, Naoto Numata, Michiaki Endo, Mao Kusuzaki, Daiki Shinyama, Ronee Asad, Kentaro Kobayashi, Tohru Shiga, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging, 2020 Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K17127
  • [Presentation] A simplified brain-shaped phantom to evaluate O-15 image quality of digital photon counting PET-CT2020

    • Author(s)
      Kenji Hirata, Keiichi Magota, Naoto Numata, Michiaki Endo, Mao Kusuzaki, Daiki Shinyama, Ronee Asad, Kentaro Kobayashi, Tohru Shiga, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K17127
  • [Presentation] Texture analysis of 18F-FDG PET may help differentiate glioblastoma from lower grade glioma.2018

    • Author(s)
      Kentaro Kobayashi
    • Organizer
      SNMMI 2018 Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K16412

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi