• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

YOKOI Tatsuya  横井 達矢

ORCIDConnect your ORCID iD *help
… Alternative Names

Yokoi Tatsuya  横井 達矢

Less
Researcher Number 70791581
Other IDs
Affiliation (Current) 2025: 名古屋大学, 工学研究科, 准教授
Affiliation (based on the past Project Information) *help 2021 – 2024: 名古屋大学, 工学研究科, 講師
Review Section/Research Field
Principal Investigator
Basic Section 26020:Inorganic materials and properties-related / Science and Engineering
Except Principal Investigator
Basic Section 26010:Metallic material properties-related
Keywords
Principal Investigator
機械学習型原子間ポテンシャル / 第一原理計算 / 機械学習原子間ポテンシャル / 原子間ポテンシャル / 機械学習 / 粒界 / 半導体転位 / 半導体 / 転位 / 自由エネルギー計算 … More / 圧縮センシング / セラミックス粒界 / 自由エネルギー / 結晶粒界 / 熱力学 … More
Except Principal Investigator
界面 / 粒界 / 分子動力学法 / 格子欠陥 / 第一原理計算 / 電子伝導 / 熱伝導 / 粒界・界面 / 転位 Less
  • Research Projects

    (4 results)
  • Research Products

    (24 results)
  • Co-Researchers

    (2 People)
  •  Backcasting Materials Design through Uncovering Mechanisms of Electronic and Thermal Conduction by Control Dislocation and Grain boundaries

    • Principal Investigator
      吉矢 真人
    • Project Period (FY)
      2023 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 26010:Metallic material properties-related
    • Research Institution
      Osaka University
  •  Machine-learning descriptor and interatomic potential for understanding interaction between general grain boundaries and other lattice defectsPrincipal Investigator

    • Principal Investigator
      横井 達矢
    • Project Period (FY)
      2023 – 2025
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 26020:Inorganic materials and properties-related
    • Research Institution
      Nagoya University
  •  Theoretical analysis of dislocation-core structure and its dynamics in semiconductorsPrincipal Investigator

    • Principal Investigator
      横井 達矢
    • Project Period (FY)
      2022 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
    • Review Section
      Science and Engineering
    • Research Institution
      Nagoya University
  •  First-principles thermodynamics for optimal design of atomic structure and properties of grain boundaries in ceramic materialsPrincipal Investigator

    • Principal Investigator
      Yokoi Tatsuya
    • Project Period (FY)
      2021 – 2022
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 26020:Inorganic materials and properties-related
    • Research Institution
      Nagoya University

All 2023 2022 2021

All Journal Article Presentation

  • [Journal Article] Anharmonicity in grain boundary energy for Al: Thermodynamic integration with artificial-neural-network potential2023

    • Author(s)
      M. Matsuura, T. Yokoi, Y. Ogura, K. Matsunaga
    • Journal Title

      Scr. Mater.

      Volume: 236 Pages: 115685-115685

    • DOI

      10.1016/j.scriptamat.2023.115685

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23K04381, KAKENHI-PUBLICLY-22H04508
  • [Journal Article] Atomic structures of grain boundaries for Si and Ge: A simulated annealing method with artificial-neural-network interatomic potentials2023

    • Author(s)
      T. Yokoi, Y. Oshima, K. Matsunaga
    • Journal Title

      Journal of Physics and Chemistry of Solids

      Volume: 173 Pages: 111114-111114

    • DOI

      10.1016/j.jpcs.2022.111114

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14405, KAKENHI-PUBLICLY-22H04508
  • [Journal Article] Grain-boundary thermodynamics with artificial-neural-network potential: its ability to predict the atomic structures, energetics and lattice vibrational properties for Al2023

    • Author(s)
      T. Yokoi, M. Matsuura, Y. Oshima, K. Matsunaga
    • Journal Title

      Physical Review Materials

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Journal Article] Electronic and atomic structures of Shockley-partial dislocations in CdX (X = S, Se and Te)2023

    • Author(s)
      Hoshino Sena、Yokoi Tatsuya、Ogura Yu、Matsunaga Katsuyuki
    • Journal Title

      J. Ceram. Soc. Japan

      Volume: 131 Issue: 10 Pages: 613-620

    • DOI

      10.2109/jcersj2.23055

    • ISSN
      1348-6535, 1882-0743
    • Year and Date
      2023-10-01
    • Language
      English
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-23KJ1059, KAKENHI-PUBLICLY-22H04508, KAKENHI-PROJECT-21H04618
  • [Journal Article] Grain boundary segregation of Y and Hf dopants in α-Al<sub>2</sub>O<sub>3</sub>: A Monte Carlo simulation with artificial-neural-network potential and density-functional-theory calculation2023

    • Author(s)
      T. Yokoi, A. Hamajima, Y. Ogura, K. Matsunaga
    • Journal Title

      J. Ceram. Soc. Japan

      Volume: 131 Issue: 10 Pages: 751-761

    • DOI

      10.2109/jcersj2.23044

    • ISSN
      1348-6535, 1882-0743
    • Year and Date
      2023-10-01
    • Language
      English
    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Journal Article] Atomic and electronic structure of grain boundaries in a-Al2O3: A combination of machine learning, first-principles calculation and electron microscopy2023

    • Author(s)
      Yokoi T.、Hamajima A.、Wei J.、Feng B.、Oshima Y.、Matsunaga K.、Shibata N.、Ikuhara Y.
    • Journal Title

      Scripta Materialia

      Volume: 229 Pages: 115368-115368

    • DOI

      10.1016/j.scriptamat.2023.115368

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22K14463, KAKENHI-PROJECT-22H04960, KAKENHI-PROJECT-21K14405, KAKENHI-PLANNED-19H05788, KAKENHI-PUBLICLY-22H04508, KAKENHI-PROJECT-20H05659
  • [Journal Article] Grain-boundary thermodynamics with artificial-neural-network potential: its ability to predict the atomic structures, energetics and lattice vibrational properties for Al2023

    • Author(s)
      T. Yokoi, M. Matsuura, Y. Oshima, K. Matsunaga
    • Journal Title

      Physical Review Materials

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Journal Article] Grain-boundary thermodynamics with artificial-neural-network potential: Its ability to predict the atomic structures, energetics, and lattice vibrational properties for Al2023

    • Author(s)
      T. Yokoi, M. Matsuura, Y. Oshima, K. Matsunaga
    • Journal Title

      Phys. Rev. Mater.

      Volume: 7 Issue: 5 Pages: 053803-053803

    • DOI

      10.1103/physrevmaterials.7.053803

    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Journal Article] Accurate prediction of grain boundary structures and energetics in CdTe: a machine-learning potential approach2022

    • Author(s)
      T. Yokoi, K. Adachi, S. Iwase, K. Matsunaga
    • Journal Title

      Physical Chemistry Chemical Physics

      Volume: 24 Issue: 3 Pages: 1620-1629

    • DOI

      10.1039/d1cp04329c

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Journal Article] Atomic structures and stability of finite-size extended interstitial defects in silicon: Large-scale molecular simulations with a neural-network potential2022

    • Author(s)
      M. Ohbitsu, T. Yokoi, Y. Noda, E. Kamiyama, T. Ushiro, H. Nagakura, K. Sueoka, K. Matsunaga
    • Journal Title

      Scripta Materialia

      Volume: 214 Pages: 114650-114650

    • DOI

      10.1016/j.scriptamat.2022.114650

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Journal Article] Preferential Growth Mode of Large-Sized Vacancy Clusters in Silicon: A Neural-Network Potential and First-Principles Study2021

    • Author(s)
      T. Ushiro, T. Yokoi, Y. Noda, E. Kamiyama, M. Ohbitsu, H. Nagakura, K. Sueoka, K. Matsunaga
    • Journal Title

      Journal of Physical Chemistry C

      Volume: 125 Issue: 48 Pages: 26869-26882

    • DOI

      10.1021/acs.jpcc.1c07973

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Presentation] 格子欠陥特性の高精度予測に向けた機械学習型記述子・原子間ポテンシャルの構築2023

    • Author(s)
      横井 達矢
    • Organizer
      第33回日本MRS年次大会
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Presentation] 格子欠陥特性の高精度予測に向けた機械学習記述子および 原子間ポテンシャルの構築2023

    • Author(s)
      横井達矢、内田匡美、小椋優、松永克志
    • Organizer
      日本金属学会 2023年秋期(第173回)講演大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K04381
  • [Presentation] 格子欠陥特性の高精度予測に向けた機械学習記述子および 原子間ポテンシャルの構築2023

    • Author(s)
      横井達矢、内田匡美、小椋優、松永克志
    • Organizer
      日本金属学会 2023年秋期(第173回)講演大会
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Presentation] 格子欠陥特性の高精度予測に向けた機械学習型記述子・原子間ポテンシャルの構築2023

    • Author(s)
      横井 達矢
    • Organizer
      第33回日本MRS年次大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K04381
  • [Presentation] Artificial-neural-network potential for accurately predicting atomic structure and physical properties of lattice defects in semiconductors2022

    • Author(s)
      T. Yokoi
    • Organizer
      The 8th International Symposium on Advanced Science and Technology of Silicon Materials
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Presentation] Artificial-neural-network descriptor and interatomic potential for molecular simulations of lattice defects2022

    • Author(s)
      T. Yokoi
    • Organizer
      6th International Symposium on Frontier in Materials Science
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Presentation] 格子欠陥の原子構造・特性の予測に向けた ニューラルネットワーク記述子および原子間ポテンシャルの構築2022

    • Author(s)
      横井達矢、大島優、松永克志
    • Organizer
      日本金属学会2022年秋期第171回講演大会
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Presentation] 格子欠陥の原子構造と特性の高精度予測に向けたニューラルネットワーク記述子・原子間ポテンシャルの構築2022

    • Author(s)
      横井達矢、大島優、松永克志
    • Organizer
      第32回日本MRS年次大会
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Presentation] Artificial-neural-network potential for accurately predicting atomic structure and physical properties of lattice defects in semiconductors2022

    • Author(s)
      T. Yokoi
    • Organizer
      The 8th International Symposium on Advanced Science and Technology of Silicon Materials
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Presentation] Artificial-neural-network descriptor and interatomic potential for molecular simulations of lattice defects2022

    • Author(s)
      T. Yokoi
    • Organizer
      6th International Symposium on Frontier in Materials Science
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Presentation] Grain boundary structures and energetics in CdTe: An artificial-neural-network interatomic potential and first-principles approach2022

    • Author(s)
      T. Yokoi, K. Adachi, Y. Oshima1, K. Matsunaga
    • Organizer
      The 33rd International Photovoltaic Science and Engineering Conference
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14405
  • [Presentation] 格子欠陥の原子構造・特性の予測に向けた ニューラルネットワーク記述子および原子間ポテンシャルの構築2022

    • Author(s)
      横井達矢、大島優、松永克志
    • Organizer
      日本金属学会2022年秋期第171回講演大会
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • [Presentation] Grain boundary structures and energetics in CdTe: An artificial-neural-network interatomic potential and first-principles approach2022

    • Author(s)
      T. Yokoi, K. Adachi, Y. Oshima, K. Matsunaga
    • Organizer
      The 33rd International Photovoltaic Science and Engineering Conference
    • Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-22H04508
  • 1.  吉矢 真人 (00399601)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  馮 斌
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi