• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kadokami Teruhisa  門上 晃久

ORCIDConnect your ORCID iD *help
… Alternative Names

門上 晃久  カドカミ テルヒサ

Less
Researcher Number 80382026
Other IDs
Affiliation (Current) 2025: 金沢大学, 機械工学系, 教授
Affiliation (based on the past Project Information) *help 2021 – 2023: 金沢大学, 機械工学系, 教授
2017 – 2019: 金沢大学, 機械工学系, 教授
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related / Geometry
Except Principal Investigator
Geometry
Keywords
Principal Investigator
Alexander polynomial / 結び目理論 / もろ手性 / デーン手術 / アレクサンダー多項式 / 仮想結び目 / 連分数 / ライデマイスタートーション / レンズ空間 / 絡み目 … More / 馬-邱指数 / 中西指数 / ファイバー結び目 / 交換子群 / アレクサンダー加群 / Jones polynomial / invertibility / amphicheirality / mapping class group / link symmetric group / 幾何学 / トポロジー / Seifert fibered space / Dehn surgery / 低次元トポロジー / 結び目と数論 / Reidemeister torsion / 結び目 … More
Except Principal Investigator
ポリマー / トポロジー / 高分子 / DNA / 結び目 Less
  • Research Projects

    (3 results)
  • Research Products

    (12 results)
  • Co-Researchers

    (7 People)
  •  Various applications of Alexander invariantsPrincipal Investigator

    • Principal Investigator
      門上 晃久
    • Project Period (FY)
      2021 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Kanazawa University
  •  Applications of Alexander polynomialPrincipal Investigator

    • Principal Investigator
      Kadokami Teruhisa
    • Project Period (FY)
      2017 – 2019
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Geometry
    • Research Institution
      Kanazawa University
  •  Research on knot theory and its application

    • Principal Investigator
      Shimokawa Koya
    • Project Period (FY)
      2016 – 2020
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Geometry
    • Research Institution
      Saitama University

All 2023 2022 2019 2018

All Journal Article Presentation

  • [Journal Article] The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability2023

    • Author(s)
      Kadokami Teruhisa
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 32, No.03 Issue: 03 Pages: 2350022-2350022

    • DOI

      10.1142/s0218216523500220

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Journal Article] Seifert surgery on knots via Reidemeister torsion and Casson-Walker invariant III2018

    • Author(s)
      Teruhisa Kadokami, Noriko Maruyama, Tsuyoshi Sakai
    • Journal Title

      Topology and its Applications

      Volume: 241 Pages: 78-81

    • DOI

      10.1016/j.topol.2018.03.034

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17K05246
  • [Presentation] The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability2023

    • Author(s)
      門上晃久
    • Organizer
      日本数学会(中央大学)
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Presentation] The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability2023

    • Author(s)
      Teruhisa Kadokami
    • Organizer
      The 18th East Asian Conference on Geometric Topology (Soochow University)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Presentation] A generalization of the link-symmetric group2023

    • Author(s)
      門上晃久
    • Organizer
      佐賀創発数理セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Presentation] The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability2022

    • Author(s)
      門上晃久
    • Organizer
      結び目の数理V(日本大学)
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Presentation] The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability2022

    • Author(s)
      門上晃久
    • Organizer
      NKOOKセミナー
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Presentation] The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability2022

    • Author(s)
      門上晃久
    • Organizer
      岐阜大学トポロジーセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K03245
  • [Presentation] Knot theory in 3-manifold via virtual knot theory2019

    • Author(s)
      Teruhisa Kadokami
    • Organizer
      Knots in Tsushima 2019
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K05246
  • [Presentation] Geometric study of virtual knot theory2019

    • Author(s)
      門上晃久
    • Organizer
      拡大KOOKセミナー2019
    • Data Source
      KAKENHI-PROJECT-17K05246
  • [Presentation] Knot theory in 3-manifold via virtual knot theory2019

    • Author(s)
      門上晃久
    • Organizer
      結び目の数理II
    • Data Source
      KAKENHI-PROJECT-17K05246
  • [Presentation] Reidemeister torsion の利用法1,22019

    • Author(s)
      門上晃久
    • Organizer
      低次元トポロジー勉強会
    • Data Source
      KAKENHI-PROJECT-17K05246
  • 1.  Shimokawa Koya (60312633)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  河内 明夫 (00112524)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  石原 海 (40634762)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  小沢 誠 (50308160)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 5.  三松 佳彦 (70190725)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 6.  山口 祥司 (30534044)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 7.  谷山 公規 (10247207)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi