• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mototake Yoh-ichi  本武 陽一

ORCIDConnect your ORCID iD *help
Researcher Number 80848672
Other IDs
Affiliation (Current) 2025: 一橋大学, 大学院ソーシャル・データサイエンス研究科, 准教授
Affiliation (based on the past Project Information) *help 2023 – 2025: 一橋大学, 大学院ソーシャル・データサイエンス研究科, 准教授
2022: 一橋大学, ソーシャル・データサイエンス研究科, 准教授
2020 – 2021: 統計数理研究所, 統計的機械学習研究センター, 特任助教
Review Section/Research Field
Principal Investigator
Transformative Research Areas, Section (II) / Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related / Science and Engineering
Except Principal Investigator
Medium-sized Section 61:Human informatics and related fields / Sections That Are Subject to Joint Review: Basic Section60030:Statistical science-related , Basic Section61030:Intelligent informatics-related / Basic Section 60030:Statistical science-related / Basic Section 61030:Intelligent informatics-related / Medium-sized Section 16:Astronomy and related fields
Keywords
Principal Investigator
解釈可能AI / パターンダイナミクス / 深層ニューラルネット / 対称性推定 / 保存量推定 / 深層ニューラルネットワーク / 準安定状態の特徴量 / 逆磁区発生の機序 / ブロックコポリマー の相分離構造 / パーシステントホモロジー … More / パターン形成 / 位相幾何的データ分析 / パターン形成過程 / 位相的データ分析 / 高分子ポリマー / 磁区構造 / 強磁性体 / 機械学習 / 位相的データ解析 … More
Except Principal Investigator
適応・進化 / 自己組織化 / 計算トポロジー / アクティブマター / ロバスト推定 / 統計的データ解析 / 機械学習 / 多様体 / 確率密度関数 / 位相的データ解析 / 幾何学的データ / 統計計算・コンピュータ支援統計 / 統計的学習理論 / 宇宙論 / 銀河形成・進化 / 理論天文学 Less
  • Research Projects

    (6 results)
  • Research Products

    (49 results)
  • Co-Researchers

    (9 People)
  •  位相的データ解析による階層構造をもつ大規模群れ運動の縮約モデリングとその応用Principal Investigator

    • Principal Investigator
      本武 陽一
    • Project Period (FY)
      2025 – 2026
    • Research Category
      Grant-in-Aid for Transformative Research Areas (A)
    • Review Section
      Transformative Research Areas, Section (II)
    • Research Institution
      Hitotsubashi University
  •  Machine-Learning-Reinforced Cosmic Structure Formation: From Large-Scale Structure Formation to Galaxy Evolution

    • Principal Investigator
      竹内 努
    • Project Period (FY)
      2024 – 2028
    • Research Category
      Grant-in-Aid for Scientific Research (A)
    • Review Section
      Medium-sized Section 16:Astronomy and related fields
    • Research Institution
      Nagoya University
  •  Constructing Induced self-organization in active matters using computational topology

    • Principal Investigator
      末谷 大道
    • Project Period (FY)
      2024 – 2025
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 61:Human informatics and related fields
    • Research Institution
      Oita University
  •  幾何学的データ解析手法の開発と位相的データ解析への展開

    • Principal Investigator
      佐々木 博昭
    • Project Period (FY)
      2023 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 61030:Intelligent informatics-related
      Basic Section 60030:Statistical science-related
      Sections That Are Subject to Joint Review: Basic Section60030:Statistical science-related , Basic Section61030:Intelligent informatics-related
    • Research Institution
      Meiji Gakuin University
      Future University-Hakodate
  •  Development of machine learning methods for discovering symmetries in pattern dynamicsPrincipal Investigator

    • Principal Investigator
      本武 陽一
    • Project Period (FY)
      2022 – 2026
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
    • Research Institution
      Hitotsubashi University
  •  Constructing a reduced model of a pattern formation process on the basis of topological data analysisPrincipal Investigator

    • Principal Investigator
      本武 陽一
    • Project Period (FY)
      2020 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
    • Review Section
      Science and Engineering
    • Research Institution
      The Institute of Statistical Mathematics

All 2024 2023 2022 2021 2020

All Journal Article Presentation

  • [Journal Article] Autoregressive With Slack Time Series Model for Forecasting a Partially-Observed Dynamical Time Series2024

    • Author(s)
      Akifumi Okuno, Yuya Morishita, Yoh-ichi Mototake
    • Journal Title

      IEEE Access

      Volume: 12 Pages: 24621-24630

    • DOI

      10.1109/access.2024.3365724

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-21K17718, KAKENHI-PROJECT-22K13979, KAKENHI-PROJECT-23K28150
  • [Journal Article] Quantifying physical insights cooperatively with exhaustive search for Bayesian spectroscopy of X-ray photoelectron spectra2023

    • Author(s)
      Hiroyuki Kumazoe, Kazunori Iwamitsu, Masaki Imamura, Kazutoshi Takahashi, Yoh-ichi Mototake, Masato Okada, Ichiro Akai
    • Journal Title

      Scientific Reports

      Volume: 13 Issue: 1

    • DOI

      10.1038/s41598-023-40208-3

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K13979, KAKENHI-PROJECT-23H00486
  • [Journal Article] Revealing the Mechanism of Large-scale Gradient Systems Using a Neural Reduced Potential2023

    • Author(s)
      Shunya Tsuji, Ryo Murakami, Hayaru Shouno, Yoh-ichi Mototake
    • Journal Title

      NeurIPS2023 Workshop on Machine Learning and the Physical Sciences(ML4PS)

      Volume: -

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Journal Article] Extracting Nonlinear Symmetries From Trained Neural Networks on Dynamics Data2023

    • Author(s)
      Yoh-ichi Mototake
    • Journal Title

      NeurIPS2023 Workshop on AI for Sciences: from Theory to Practice

      Volume: -

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Journal Article] 位相的データ解析による銀河分布の定量化とバリオン音響振動抽出2023

    • Author(s)
      竹内 努,河野 海,クレ スチェータ,西澤 淳,村上 広耶,馬 海霞,本武 陽一
    • Journal Title

      統計数理

      Volume: 71(2) Pages: 159-187

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Journal Article] Quantitative prediction of fracture toughness (<i>K</i><sub>I<i>c</i></sub>) of polymer by fractography using deep neural networks2022

    • Author(s)
      Mototake Y.、Ito K.、Demura M.
    • Journal Title

      Science and Technology of Advanced Materials: Methods

      Volume: 2 Issue: 1 Pages: 310-321

    • DOI

      10.1080/27660400.2022.2107883

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Journal Article] Quantitative Prediction of Fracture Toughness (KIc) of Polymer by Fractography Using Deep Neural Networks2022

    • Author(s)
      Yoh-ichi Mototake, Kaita Ito, Masahiko Demura
    • Journal Title

      arxiv

      Volume: -

    • Open Access
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Journal Article] Revealing the Mechanism of Magnetic Domain Formation by Topological Data Analysis2022

    • Author(s)
      Yoh-ichi Mototake, Masaichiro Mizumaki, Kazue Kudo, Kenji Fukumizu
    • Journal Title

      arxiv

      Volume: 2204.12194

    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Journal Article] Revealing the Mechanism of Magnetic Domain Formation by Topological Data Analysis2022

    • Author(s)
      Yoh-ichi Mototake, Masaichiro Mizumaki, Kazue Kudo, Kenji Fukumizu
    • Journal Title

      arxiv

      Volume: -

    • Open Access
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Journal Article] Interpretable conservation law estimation by deriving the symmetries of dynamics from trained deep neural networks2021

    • Author(s)
      Mototake Yoh-ichi
    • Journal Title

      Physical Review E

      Volume: 103 Issue: 3 Pages: 033303-033303

    • DOI

      10.1103/physreve.103.033303

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Journal Article] 位相的データ分析法による材料構造形成過程の分析2021

    • Author(s)
      本武陽一、水牧仁一朗、工藤和恵、福水健次
    • Journal Title

      スマートプロセス 学会誌

      Volume: 10(3) Pages: 108-120

    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Journal Article] Free Energy Estimation of Metastable Structures of Block Copolymers using Topological Data Analysis2020

    • Author(s)
      本武 陽一、山中 貞人、青柳 岳司、大西 立顕、福水 健次
    • Journal Title

      J. Comput. Chem. Jpn.

      Volume: 19 Issue: 4 Pages: 169-171

    • DOI

      10.2477/jccj.2021-0009

    • NAID

      130008031793

    • ISSN
      1347-1767, 1347-3824
    • Language
      Japanese
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PLANNED-17H06464, KAKENHI-PUBLICLY-20H04648, KAKENHI-ORGANIZER-17H06460
  • [Journal Article] Towards a Geometrical Understanding of Physical Phenomena via Extraction of Data Manifolds using Generative Models2020

    • Author(s)
      Kotaro Sakamoto、Yuichiro Mori、Yoh-ichi Mototake
    • Journal Title

      Proceedings of the 2020 International Symposium on Nonlinear Theory and its Applications

      Volume: 2020 Pages: 255-255

    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Journal Article] Topological Data Analysis for microdomain patternsof Block Copolymer2020

    • Author(s)
      Yoh-ichi Mototake、Sadato Yamanaka、Takeshi Aoyagi、Takaaki Ohnishi、Kenji Fukumizu
    • Journal Title

      Proceedings of the 2020 International Symposium on Nonlinear Theory and its Applications

      Volume: 2020 Pages: 517-517

    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] Interpretable reduced modeling of large-scale pattern dynamics - from materials science to astrophysics -2024

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      Statistical Analysis of Random Fields in Cosmology
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Interpretable reduced modeling of large-scale pattern dynamics - from materials science to astrophysics -2024

    • Author(s)
      You-ichi Mototake
    • Organizer
      International Workshop KEK-Cosmo 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] A Trial for the Realization of Material Pattern Informatics Using Interpretable AI2023

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      ICIAM Tokyo 2023 Minisymposium "Perspectives in Artificial Intelligence and Machine Learning in Materials Chemistry"
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] 解釈可能AIによるデータ駆動理学の実現へ向けた取り組み2023

    • Author(s)
      本武 陽一
    • Organizer
      第38回情報計測オンラインセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Neural reduced potentialによる勾配系の解析枠組みの提案2023

    • Author(s)
      辻 駿哉、村上 諒、庄野 逸、本武 陽一
    • Organizer
      2023年度人工知能学会全国大会(第37回)
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Interpretable AI supporting scientists' insight into large-scale dynamics2023

    • Author(s)
      You-ichi Mototake
    • Organizer
      Global Plasma Forum in Aomori 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] Revealing the Mechanism of Large-scale Gradient Systems Using a Neural Reduced Potential2023

    • Author(s)
      Shunya Tsuji, Ryo Murakami, Hayaru Shouno, Yoh-ichi Mototake
    • Organizer
      NeurIPS 2023 Workshop on Machine Learning and the Physical Sciences(ML4PS)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] 解釈可能AIによるデータ駆動理学の実現へ向けた取り組み2023

    • Author(s)
      本武陽一
    • Organizer
      第38回情報計測オンラインセミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] Transformerを用いたフラクトグラフィ2023

    • Author(s)
      山中翔太,有竹俊光,天本義史,本武陽一
    • Organizer
      第26回情報論的学習理論ワークショップ
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] Transformerを用いたフラクトグラフィ2023

    • Author(s)
      山中翔太、有竹俊光、天本義史、本武陽一
    • Organizer
      情報論的学習理論ワークショップIBIS
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Neural reduced potentialによる勾配系の解析枠組みの提案2023

    • Author(s)
      辻 駿哉,村上 諒,庄野 逸,本武 陽一
    • Organizer
      2023年度人工知能学会全国大会(第37回)
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] Perspectives in Artificial Intelligence and Machine Learning in Materials Chemistry2023

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      ICIAM Tokyo 2023 Minisymposium
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Extracting Nonlinear Symmetries From Trained Neural Networks on Dynamics Data2023

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      NeurIPS 2023 Workshop on AI for Sciences: from Theory to Practice
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Interpretable AI Supporting Scientists' Insight into Large-Scale Dynamics2023

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      Global Plasma Forum in Aomori 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K28150
  • [Presentation] Deriving the nonlinear symmetries of dynamics from trained deep neural networks2022

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      APS April Meeting 2022
    • Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 材料パターン情報学へ向けた位相的データ解析による取り組み2022

    • Author(s)
      本武陽一
    • Organizer
      CRESTさきがけクラスター会議
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] 機械学習による時系列データ多様体に隠れた対称性抽出法とルンゲ・レンツベクトルの推定2022

    • Author(s)
      本武陽一
    • Organizer
      日本物理学会2022年次大会
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 磁区パターン形成過程の位相的データ解析2022

    • Author(s)
      本武陽一
    • Organizer
      第236回研究会/第69回化合物新磁性材料専門研究会
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] データサイエンスと科学のこころ2022

    • Author(s)
      本武陽一
    • Organizer
      機械学会関東支部茨城ブロック なるほど技術者講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] 高分子の材料パターン情報学へ向けた位相的データ解析による取り組み2022

    • Author(s)
      本武陽一
    • Organizer
      京都大学化学研究所 高分子セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] 位相的データ解析の材料科学への応用事例紹介2022

    • Author(s)
      本武陽一
    • Organizer
      2021年度 第3回ORセミナー
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 位相的データ解析による磁区構造形成過程の機序解明2022

    • Author(s)
      本武陽一
    • Organizer
      日本物理学会春季大会
    • Data Source
      KAKENHI-PROJECT-22K13979
  • [Presentation] Interpretation of trained deep neural networks to collaborate with scientists2021

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      Materials Research Meeting 2021
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] Quantitative Prediction of Fracture Toughness (K1c) of Polymer via Fractography using Deep Neural Networks2021

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      Materials Research Meeting 2021
    • Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 力学系データで訓練された深層ニューラルネットからの非線形な対称性の抽出2021

    • Author(s)
      本武陽一
    • Organizer
      日本物理学会2021秋期大会
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] Topological data analysis of pattern dynamics in material science2021

    • Author(s)
      Yoh-ichi Mototake
    • Organizer
      The 21st International Conference on Discrete Geometric Analysis for Materials Design
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 位相的データ分析法による材料構造形成過程の分析2021

    • Author(s)
      本武陽一
    • Organizer
      九大先導研・新学術「材料離散幾何解析」合同シンポジウム マテリアルズインフォマティクス講演会
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 位相的データ分析法による材料構造形成過程の分析2021

    • Author(s)
      本武陽一
    • Organizer
      統計物理と統計科学のセミナー
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] TDAによる強磁性体磁区パターン形成過程の分析2020

    • Author(s)
      本武陽一
    • Organizer
      応用のためのトポロジカルデータ解析チュートリアル&ワークショップ
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 物理学者と学習機械の効果的な協業に向けて:学習済み深層ニューラルネットワークからの解釈可能な物理法則抽出2020

    • Author(s)
      本武陽一
    • Organizer
      Deep learning and Physics 2020
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 学習済み深層ニューラルネットワークから の 解釈可能な物理法則抽出2020

    • Author(s)
      本武陽一
    • Organizer
      第14回 物性科学領域横断研究会 (領域合同研究会)
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 位相的データ分析による強磁性体磁区パターン形成過程の分析2020

    • Author(s)
      本武陽一、水牧仁一朗、工藤和恵、福水健次
    • Organizer
      TDA-MI workshop 2020
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 位相幾何的データ分析によるブロックコポリマー準安定構造の自由エネルギー推定2020

    • Author(s)
      本武陽一、山中 貞人、青柳 岳司、大西 立顕、福水 健次
    • Organizer
      日本コンピュータ化学会
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 位相的データ分析による強磁性体磁区パターン形成過程の分析2020

    • Author(s)
      本武陽一、水牧仁一朗、工藤和恵、福水健次
    • Organizer
      放射光学会
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • [Presentation] 学習済み深層ニューラルネットワークからの解釈可能な物理法則抽出2020

    • Author(s)
      本武陽一
    • Organizer
      統計物理と統計科学のセミナー
    • Data Source
      KAKENHI-PUBLICLY-20H04648
  • 1.  竹内 努 (90436072)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  矢野 恵佑 (20806070)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  今泉 允聡 (90814088)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  佐々木 博昭 (80756916)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 5.  金森 敬文 (60334546)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 6.  末谷 大道 (40507167)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 7.  高見 利也 (10270472)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 8.  赤穗 昭太郎 (40356340)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 9.  奥野 彰文
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi