• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ouyang Tinghui  オウヤン ティングゥイ

ORCIDConnect your ORCID iD *help
Researcher Number 80870849
Other IDs
Affiliation (based on the past Project Information) *help 2023: 国立情報学研究所, 情報社会相関研究系, 特任研究員
2022: 国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 研究員
Review Section/Research Field
Principal Investigator
Basic Section 61030:Intelligent informatics-related
Keywords
Principal Investigator
big data analysis / explainability / anomaly detection / graph neural network / explanation / structure description / information graph / anomaly data detection / data mining / granular computing … More / explaination / data structure / Out-of-distribution / Anomaly detection Less
  • Research Projects

    (1 results)
  • Research Products

    (8 results)
  •  Advanced deep graph neural networks for explainable anomaly detection studyPrincipal Investigator

    • Principal Investigator
      Ouyang Tinghui
    • Project Period (FY)
      2022 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 61030:Intelligent informatics-related
    • Research Institution
      National Institute of Informatics
      National Institute of Advanced Industrial Science and Technology

All 2023 2022

All Journal Article Presentation

  • [Journal Article] Fuzzy rule-based anomaly detectors construction via information granulation2023

    • Author(s)
      Ouyang Tinghui、Zhang Xinhui
    • Journal Title

      Information Sciences

      Volume: 622 Pages: 985-998

    • DOI

      10.1016/j.ins.2022.12.011

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Journal Article] Granular Description of Uncertain Data for Classification Rules in Three-Way Decision2022

    • Author(s)
      Zhang Xinhui、Ouyang Tinghui
    • Journal Title

      Applied Sciences

      Volume: 12 Issue: 22 Pages: 11381-11381

    • DOI

      10.3390/app122211381

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Journal Article] Structural rule-based modeling with granular computing2022

    • Author(s)
      Ouyang Tinghui
    • Journal Title

      Applied Soft Computing

      Volume: 128 Pages: 109519-109519

    • DOI

      10.1016/j.asoc.2022.109519

    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Journal Article] DBSCAN-based granular descriptors for rule-based modeling2022

    • Author(s)
      Ouyang Tinghui、Zhang Xinhui
    • Journal Title

      Soft Computing

      Volume: 26 Issue: 24 Pages: 13249-13262

    • DOI

      10.1007/s00500-022-07514-w

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Journal Article] Online structural clustering based on DBSCAN extension with granular descriptors2022

    • Author(s)
      Ouyang Tinghui、Shen Xun
    • Journal Title

      Information Sciences

      Volume: 607 Pages: 688-704

    • DOI

      10.1016/j.ins.2022.06.027

    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Journal Article] Extension of DBSCAN in Online Clustering: An Approach Based on Three-Layer Granular Models2022

    • Author(s)
      Zhang Xinhui、Shen Xun、Ouyang Tinghui
    • Journal Title

      Applied Sciences

      Volume: 12 Issue: 19 Pages: 9402-9402

    • DOI

      10.3390/app12199402

    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Presentation] A Novel Statistical Measure for Out-of-Distribution Detection in Data Quality Assurance2023

    • Author(s)
      T Ouyang, I Echizen, Y Seo
    • Organizer
      2023 30th Asia-Pacific Software Engineering Conference (APSEC),
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K17961
  • [Presentation] Quality assurance of a gpt-based sentiment analysis system: Adversarial review data generation and detection2023

    • Author(s)
      T Ouyang, HQ Nguyen-Son, HH Nguyen, I Echizen, Y Seo
    • Organizer
      2023 30th Asia-Pacific Software Engineering Conference (APSEC),
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K17961

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi