• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Sugiyama Masashi  杉山 将

… Alternative Names

SUGIYAMA Masashi  杉山 将

Less
Researcher Number 90334515
Other IDs
  • ORCIDhttps://orcid.org/0000-0001-6658-6743
External Links
Affiliation (Current) 2025: 国立研究開発法人理化学研究所, 革新知能統合研究センター, センター長
2025: 東京大学, 大学院新領域創成科学研究科, 教授
Affiliation (based on the past Project Information) *help 2017 – 2022: 東京大学, 大学院新領域創成科学研究科, 教授
2014 – 2016: 東京大学, 新領域創成科学研究科, 教授
2013: 東京工業大学, 大学院・情報理工学研究科, 准教授
2011 – 2013: 東京工業大学, 情報理工学(系)研究科, 准教授
2007 – 2011: 東京工業大学, 大学院・情報理工学研究科, 准教授 … More
2007: Tokyo Institute of Technology, 大学院・情報通工学研究科, 准教授
2006: 東京工業大学, 大学院情報理工学研究科, 助教授
2006: 東京工業大学, 大学院理工学研究科, 助教授
2005: 東京工業大学, 大学院・情報理工学研究科, 助教授
2003: 東工大, 情報理工学研究科, 助手
2002: 東京工業大学, 大学院・情報理工学研究科, 助教授
2001: Tokyo Institute of Technology, Department of Computer Science, Research Associate, 大学院・情報理工学研究科, 助手
2001: 東京工業大学, 大学院・理工学研究科, 助手 Less
Review Section/Research Field
Principal Investigator
Intelligent informatics / Intelligent informatics / Complex systems / Intelligent informatics
Except Principal Investigator
Intelligent informatics / Perceptual information processing / Perception information processing/Intelligent robotics / Basic Section 61010:Perceptual information processing-related / Complex systems
Keywords
Principal Investigator
機械学習 / 強化学習 / 共変量シフト / 教師付き学習 / 次元削減 / ロボット制御 / モデル選択 / 汎化能力 / ブレインコンピュータインターフェイス / 主成分分析 … More / 共分散行列 / オンライン学習 / マルチタスク学習 / クラウドソーシング / ロバスト化 / 多椀バンディット問題 / ロバスト性 / ベイズ推論 / 模倣学習 / 多腕バンディット問題 / 密度差推定 / ダイバージェンス / 類似度 / リーマン幾何 / クラス事前確率推定 / 教師なし学習 / 密度微分 / 密度差 / 密度比 / 情報量 / 制御理論 / ロバスト学習 / スパース学習 / 意思決定 / 特徴選択 / 意志決定 / 予測 / 密度比推定 / 非定常環境 / 政策探索法 / 政策反復法 / 重要度重み / 重点サンプリング / 非定常環境適応 / データマイニング / 知能情報処理 / 学習と知識獲得 / ラベル無しデータ / 準教師付き学習 / 入力点依存 / 不偏性 / ブレインコンピュータインターフェース / ベイズ推定 / 交差確認法 / 汎化誤差 / 関数近似 / カーネル法 / 再生核ヒルベルト空間 / 正則化学習 / 最小二乗学習 / subspace information criterion (SIC) … More
Except Principal Investigator
パターン認識 / 機械学習 / subspace information criterion / generalization capability / supervised learning / 射影学習 / SIC / 部分空間情報量基準 / 射影学習族 / 誤差逆伝搬法 / 汎化能力 / 教師付き学習 / マハラノビス計量 / 脳信号処理 / オンライン教育 / ファイバー束 / 認識機構 / 相関行列 / 正定値行列 / ドメイン適応 / 信号処理 / 局所等方独立 / 作用素多様体 / 脳内シミュレーション / 脳内シュミレーション / 内部モデル / 強化学習 / 意思決定 / 神経科学 / active learning / SL projection learning / family of projection learning / partial projection learning / projection learning / 追加学習 / 学習族の理論 / 個別学習理論 / 能動学習 / SL射影学習 / 部分射影学習 / a family of projection learnings / admissibility / memorization learning / error back-propagation / 過学習 / ニューラルネットワーク / 適用範囲 / 許容性 / 記憶学習 / コミティマシン / 不完全交差学習 / ブレイン・コンピュータ・インターフェイス / ブレイン・コンピュータ・インターフェース / 生体信号処理 / 計量学習 / 局所等方独立方程式 / 局所独立方程式 / 多様体信号処理 / サポートベクタマシン / Grassmann多様体上の距離 / 部分カーネル主成分追跡 / コミッティマシン / 線形計画法による最大事後確率識別 / Fisher判別分析の修正項 / 適応的カーネル主成分分析 / 最小2乗確率的分類器 / 拡張カーネル法 / 制約条件付き最大事後確率識別器 / マルチカーネル適応フィルタ / 多様体上のアンサンブル学習 / 最小二乗確率的分類器 / Mahalanobis計量 / 時空間計量 / 汎化能力推定 / 多様体 / ブラインド信号抽出 / コミッティ機械 / 共変量シフト / 非対称カーネル法 / 幾何学的局所等方独立 / Mahalanobis 計量 / 信号空間の構造 Less
  • Research Projects

    (15 results)
  • Research Products

    (247 results)
  • Co-Researchers

    (17 People)
  •  Theory for unified expression of recognition mechanisms and its application to machine learning

    • Principal Investigator
      Yukihiko Yamashita
    • Project Period (FY)
      2020 – 2022
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 61010:Perceptual information processing-related
    • Research Institution
      Tokyo Institute of Technology
  •  Theory and Application of Statistical Reinforcement LearningPrincipal Investigator

    • Principal Investigator
      Sugiyama Masashi
    • Project Period (FY)
      2017 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research (A)
    • Research Field
      Intelligent informatics
    • Research Institution
      The University of Tokyo
  •  Theory of operator manifold and its application to pattern recognition

    • Principal Investigator
      Yukihiko Yamashita
    • Project Period (FY)
      2017 – 2019
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Perceptual information processing
    • Research Institution
      Tokyo Institute of Technology
  •  Manifold signal processing theory concerning metric structure and its application to biological signal processing

    • Principal Investigator
      Yukihiko Yamashita
    • Project Period (FY)
      2014 – 2016
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Perceptual information processing
    • Research Institution
      Tokyo Institute of Technology
  •  時間的な変化を伴うデータに対する機械学習手法に関する研究Principal Investigator

    • Principal Investigator
      杉山 将
    • Project Period (FY)
      2014
    • Research Category
      Grant-in-Aid for JSPS Fellows
    • Research Field
      Intelligent informatics
    • Research Institution
      The University of Tokyo
  •  Theory and Application of Information-Based Machine LearningPrincipal Investigator

    • Principal Investigator
      Sugiyama Masashi
    • Project Period (FY)
      2013 – 2016
    • Research Category
      Grant-in-Aid for Young Scientists (A)
    • Research Field
      Intelligent informatics
    • Research Institution
      The University of Tokyo
      Tokyo Institute of Technology
  •  Development of Machine Learning Theory for Prediction and Decision Making and Its Realization in Neural NetworksPrincipal Investigator

    • Principal Investigator
      Sugiyama Masashi
    • Project Period (FY)
      2011 – 2015
    • Research Category
      Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
    • Review Section
      Complex systems
    • Research Institution
      The University of Tokyo
      Tokyo Institute of Technology
  •  signal manifold by extended kernel method and its application

    • Principal Investigator
      YUKIHIKO Yamashita
    • Project Period (FY)
      2011 – 2013
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Perception information processing/Intelligent robotics
    • Research Institution
      Tokyo Institute of Technology
  •  Elucidation of the Neral Computation for Prediction and Decision Making

    • Principal Investigator
      Doya Kenji
    • Project Period (FY)
      2011 – 2015
    • Research Category
      Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
    • Review Section
      Complex systems
    • Research Institution
      Okinawa Institute of Science and Technology Graduate University
  •  Machine Learning under Changing EnvironmentsPrincipal Investigator

    • Principal Investigator
      SUGIYAMA Masashi
    • Project Period (FY)
      2008 – 2011
    • Research Category
      Grant-in-Aid for Young Scientists (A)
    • Research Field
      Intelligent informatics
    • Research Institution
      Tokyo Institute of Technology
  •  Machine learning theory based on structure of signal space and its application

    • Principal Investigator
      YAMASHITA Yukihiko
    • Project Period (FY)
      2006 – 2008
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Perception information processing/Intelligent robotics
    • Research Institution
      Tokyo Institute of Technology
  •  入力点に依存した汎化能力推定法に関する研究Principal Investigator

    • Principal Investigator
      杉山 将
    • Project Period (FY)
      2005 – 2007
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Intelligent informatics
    • Research Institution
      Tokyo Institute of Technology
  •  教師付き学習におけるモデル選択に関する研究Principal Investigator

    • Principal Investigator
      杉山 将
    • Project Period (FY)
      2002 – 2004
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Intelligent informatics
    • Research Institution
      Tokyo Institute of Technology
  •  Theory of Family of Learnings-From a Single Learning to Infinitely Many Learning-

    • Principal Investigator
      OGAWA Hidemitsu
    • Project Period (FY)
      2002 – 2004
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Intelligent informatics
    • Research Institution
      TOKYO INSTITUTE OF TECHNOLOGY
  •  Generalization Capability of Memorization Leaning

    • Principal Investigator
      OGAWA Hidemitsu
    • Project Period (FY)
      1999 – 2001
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Intelligent informatics
    • Research Institution
      Tokyo Institute of Technology

All 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Other

All Journal Article Presentation Book

  • [Book] Machine Learning from Weak Supervision: An Empirical Risk Minimization Approach2022

    • Author(s)
      Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai, and Gang Niu
    • Publisher
      The MIT Press
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Book] 機械学習のための確率と統計2015

    • Author(s)
      杉山 将
    • Total Pages
      127
    • Publisher
      講談社
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Book] Statistical Reinforcement Learning: Modern Machine Learning Approaches.2015

    • Author(s)
      Sugiyama, M.
    • Total Pages
      206
    • Publisher
      Chapman and Hall/CRC
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Book] Statistical Reinforcement Learning: Modern Machine Learning Approaches2015

    • Author(s)
      Sugiyama, M.
    • Total Pages
      206
    • Publisher
      Chapman and Hall/CRC
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Book] Introduction to Statistical Machine Learning.2015

    • Author(s)
      Sugiyama, M.
    • Total Pages
      534
    • Publisher
      Morgan Kaufmann
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Book] Introduction to Statistical Machine Learning2015

    • Author(s)
      Sugiyama, M.
    • Total Pages
      534
    • Publisher
      Morgan Kaufmann
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Book] 異常検知と変化検知2015

    • Author(s)
      井手 剛, 杉山 将
    • Total Pages
      192
    • Publisher
      講談社
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Book] イラストで学ぶ機械学習:最小二乗法による識別モデル学習を中心に2013

    • Author(s)
      杉山 将
    • Total Pages
      230
    • Publisher
      講談社
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Book] イラストで学ぶ機械学習:最小二乗法による識別モデル学習を中心に2013

    • Author(s)
      杉山 将
    • Total Pages
      230
    • Publisher
      講談社
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Book] イラストで学ぶ機械学習 : 最小二乗法による識別モデル学習を中心に2013

    • Author(s)
      杉山将
    • Total Pages
      230
    • Publisher
      講談社
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Book] イラストで学ぶ機械学習:最小二乗法による識別モデル学習を中心に,2013

    • Author(s)
      杉山 将
    • Total Pages
      230
    • Publisher
      講談社
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Book] Machine Learning in Non-Stationary Environments : Introduction to Covariate Shift Adaptation2012

    • Author(s)
      Sugiyama, M. & Kawanabe, M
    • Total Pages
      308
    • Publisher
      MIT Press, Cambridge, MA, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Book] Machine Learning in Non-Stationary Environments : Introduction to Covariate Shift Adaptation2012

    • Author(s)
      Sugiyama, M., Kawanabe, M.
    • Total Pages
      308
    • Publisher
      MIT Press
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Book] Density Ratio Estimation in Machine Learning,2012

    • Author(s)
      Sugiyama, M., Suzuki, T., & Kanamori, T.
    • Total Pages
      344
    • Publisher
      Cambridge University Press
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Book] Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation2012

    • Author(s)
      Sugiyama, M. & Kawanabe, M.
    • Total Pages
      308
    • Publisher
      MIT Press
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Book] MIT Press, Cambridge, MA, USA2009

    • Author(s)
      Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.(Eds.)
    • Publisher
      Dataset Shift in Machine Learning
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Book] Dataset Shift in Machine Learning2009

    • Author(s)
      Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D.
    • Total Pages
      248
    • Publisher
      MIT Press, Cambridge, MA, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Book] Dataset Shift in Machine Learning2009

    • Author(s)
      Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N. D.
    • Total Pages
      229
    • Publisher
      MIT Press
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Book] Dataset Shift in Machine Learning2009

    • Author(s)
      J. Quionero Candela, M. Sugiyama, A. Schwaighofer and N.D. Lawrence
    • Total Pages
      229
    • Publisher
      MIT Press
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Book] Dataset Shift in Machine Learning2009

    • Author(s)
      Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D
    • Total Pages
      248
    • Publisher
      MIT Press
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Book] パターン認識と機械学習:ペイズ理論による統計的予測,2007

    • Author(s)
      元田 浩, 栗田 多喜夫, 樋口 知之, 松本 裕治, 村田 昇, (編), 赤穂 昭太郎, 神嶌 敏弘, 杉山 将, 小野田 崇, 池田 和司, 鹿島 久嗣, 賀沢 秀人, 中島 伸一, 竹内 純一, 持橋 大地, 小山 聡, 井手 剛, 篠田 浩一, 山川 宏, (訳)
    • Total Pages
      350
    • Publisher
      シュプリンガー・ジャパン
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Representation learning for continuous action spaces is beneficial for efficient policy learning2023

    • Author(s)
      Zhao Tingting、Wang Ying、Sun Wei、Chen Yarui、Niu Gang、Sugiyama Masashi
    • Journal Title

      Neural Networks

      Volume: 159 Pages: 137-152

    • DOI

      10.1016/j.neunet.2022.12.009

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] Learning from Noisy Complementary Labels with Robust Loss Functions2022

    • Author(s)
      Hiroki Ishiguro, Takashi Ishida, Masashi Sugiyama
    • Journal Title

      IEICE Trans. Inf. & Syst.

      Volume: E105.D Issue: 2 Pages: 364-376

    • DOI

      10.1587/transinf.2021EDP7035

    • NAID

      130008149868

    • ISSN
      0916-8532, 1745-1361
    • Year and Date
      2022-02-01
    • Language
      English
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] Positive-unlabeled classification under class-prior shift: a prior-invariant approach based on density ratio estimation2022

    • Author(s)
      Nakajima Shota、Sugiyama Masashi
    • Journal Title

      Machine Learning

      Volume: 112 Issue: 3 Pages: 889-919

    • DOI

      10.1007/s10994-022-06190-z

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] Class-Wise Denoising for Robust Learning under Label Noise2022

    • Author(s)
      Gong Chen、Ding Yongliang、Han Bo、Niu Gang、Yang Jian、You Jane J.、Tao Dacheng、Sugiyama Masashi
    • Journal Title

      IEEE Transactions on Pattern Analysis and Machine Intelligence

      Volume: 45 Pages: 1-1

    • DOI

      10.1109/tpami.2022.3178690

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information.2022

    • Author(s)
      Osa, T., Tangkaratt, V., & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: -

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Robust imitation learning from noisy demonstrations2021

    • Author(s)
      Tangkaratt, V., Charoenphakdee, N., & Sugiyama, M.
    • Journal Title

      Proceedings of 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021)

      Volume: - Pages: 298-306

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Constraint learning for control tasks with limited duration barrier functions2021

    • Author(s)
      Ohnishi Motoya、Notomista Gennaro、Sugiyama Masashi、Egerstedt Magnus
    • Journal Title

      Automatica

      Volume: 127 Pages: 109504-109504

    • DOI

      10.1016/j.automatica.2021.109504

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] γ-ABC: Outlier-robust approximate Bayesian computation based on a robust divergence estimator2021

    • Author(s)
      Fujisawa, M., Teshima, T., Sato, I., & Sugiyama, M.
    • Journal Title

      Proceedings of 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021)

      Volume: - Pages: 1783-1791

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] LocalDrop: A Hybrid Regularization for Deep Neural Networks2021

    • Author(s)
      Lu Ziqing、Xu Chang、Du Bo、Ishida Takashi、Zhang Lefei、Sugiyama Masashi
    • Journal Title

      IEEE Transactions on Pattern Analysis and Machine Intelligence

      Volume: - Pages: 1-1

    • DOI

      10.1109/tpami.2021.3061463

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] A unified view of likelihood ratio and reparameterization gradients2021

    • Author(s)
      Parmas, P. & Sugiyama, M.
    • Journal Title

      Proceedings of 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021)

      Volume: - Pages: 4078-4086

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Polynomial-time algorithms for multiple-arm identification with full-bandit feedback.2020

    • Author(s)
      Kuroki, Y., Xu, L., Miyauchi, A., Honda, J., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 32 Pages: 1733-1773

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Analysis and design of Thompson sampling for stochastic partial monitoring.2020

    • Author(s)
      Tsuchiya, T., Honda, J., & Sugiyama, M.
    • Journal Title

      Advances in Neural Information Processing Systems 33

      Volume: - Pages: 8861-8871

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Variational imitation learning with diverse-quality demonstrations.2020

    • Author(s)
      Tangkaratt, V., Han, B., Khan, M. E., & Sugiyama, M.
    • Journal Title

      Proceedings of 37th International Conference on Machine Learning (ICML2020)

      Volume: - Pages: 9407-9417

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Online dense subgraph discovery via blurred-graph feedback.2020

    • Author(s)
      Kuroki, Y., Miyauchi, A., Honda, J., & Sugiyama, M.
    • Journal Title

      Proceedings of 37th International Conference on Machine Learning (ICML2020)

      Volume: - Pages: 5522-5532

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Accelerating the diffusion-based ensemble sampling by non-reversible dynamics.2020

    • Author(s)
      Futami, F., Sato, I., & Sugiyama, M.
    • Journal Title

      Proceedings of 37th International Conference on Machine Learning (ICML2020)

      Volume: - Pages: 3337-3347

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Coupling-based invertible neural networks are universal diffeomorphism approximators2020

    • Author(s)
      Takeshi Teshima、Isao Ishikawa、 Koichi Tojo、 Kenta Oono、Masahiro Ikeda、Masashi Sugiyama
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 33 Pages: 3362-3373

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] Active deep Q-learning with demonstration2020

    • Author(s)
      Chen, S.-A., Tangkaratt, V., Lin, H.-T., & Sugiyama, M.
    • Journal Title

      Machine Learning, to appear

      Volume: -

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Centroid Estimation with Guaranteed Efficiency: A General Framework for Weakly Supervised Learning2020

    • Author(s)
      Gong Chen、Yang Jian、You Jane J.、Sugiyama Masashi
    • Journal Title

      IEEE Transactions on Pattern Analysis and Machine Intelligence

      Volume: - Issue: 6 Pages: 1-1

    • DOI

      10.1109/tpami.2020.3044997

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Journal Article] Partially zero-shot domain adaptation from incomplete target data with missing classes2020

    • Author(s)
      Masato Ishii, Takeshi Takenouchi, and Masashi Sugiyama
    • Journal Title

      Proceedings of The IEEE Winter Conference on Applications of Computer Vision

      Volume: - Pages: 3052-3060

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H01760
  • [Journal Article] Hierarchical reinforcement learning via advantage-weighted information maximization2019

    • Author(s)
      Osa, T., Tangkaratt, V., & Sugiyama, M.
    • Journal Title

      Proceedings of Seventh International Conference on Learning Representations (ICLR2019)

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Unsupervised domain adaptation based on source-guided discrepancy2019

    • Author(s)
      S. Kuroki, N. Charoenphakdee, H. Bao, J. Honda, I. Sato, and M. Sugiyama
    • Journal Title

      Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI2019)

      Volume: -

    • Data Source
      KAKENHI-PROJECT-17H01760
  • [Journal Article] Imitation learning from imperfect demonstration2019

    • Author(s)
      Wu, Y.-H., Charoenphakdee, N., Bao, H., Tangkaratt, V., & Sugiyama, M.
    • Journal Title

      Proceedings of 36th International Conference on Machine Learning (ICML2019)

      Volume: - Pages: 6818-6827

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Zero-shot domain adaptation based on attribute information2019

    • Author(s)
      Masato Ishii, Takeshi Takenouchi, and Masashi Sugiyama
    • Journal Title

      Proceedings of the 11th Asian Conference on Machine Learning

      Volume: - Pages: 473-488

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H01760
  • [Journal Article] Good arm identification via bandit feedback.2019

    • Author(s)
      Kano, H., Honda, J., Sakamaki, K., Matsuura, K., Nakamura, A., & Sugiyama, M.
    • Journal Title

      Machine Learning

      Volume: -

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Good arm identification via bandit feedback2019

    • Author(s)
      Kano, H., Honda, J., Sakamaki, K., Matsuura, K., Nakamura, A., & Sugiyama, M.
    • Journal Title

      Machine Learning

      Volume: 108 Pages: 721-745

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Journal Article] Generative local metric learning for kernel regression2017

    • Author(s)
      Y.-K. Noh, M. Sugiyama, K.-Y., Kim, F. C. Park, and D. D. Lee
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 30 Pages: 2449-2459

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H01760
  • [Journal Article] Class-prior estimation for learning from positive and unlabeled data2017

    • Author(s)
      du Plessis, M. C., Niu, G., & Sugiyama, M.
    • Journal Title

      Machine Learning

      Volume: -

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Least-squares log-density gradient clustering for Riemannian manifolds2017

    • Author(s)
      M. Ashizawa, H. Sasaki, T. Sakai, and M. Sugiyama
    • Journal Title

      Proceedings of 29th International Conference on Artificial Intelligence and Statistics

      Volume: 54 Pages: 537-546

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] Geometry-aware principal component analysis for symmetric positive definite matrices2017

    • Author(s)
      Horev, I., Yger, F., & Sugiyama, M.
    • Journal Title

      Machine Learning

      Volume: -

    • Peer Reviewed / Acknowledgement Compliant / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Learning discrete representations via information maximizing self-augmented training2017

    • Author(s)
      W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama
    • Journal Title

      Proceedings of 34th International Conference on Machine Learning

      Volume: 70 Pages: 1558-1567

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17H01760
  • [Journal Article] Direct density-derivative estimation2016

    • Author(s)
      Sasaki, H., Noh, Y.-K., Niu, G., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 28 Pages: 1101-1140

    • Peer Reviewed / Acknowledgement Compliant / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Regularized multi-task learning for multi-dimensional log-density gradient estimation2016

    • Author(s)
      Yamane, I., Sasaki, H., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 28 Pages: 1388-1410

    • NAID

      110009971442

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Theoretical and experimental analyses of tensor-based regression and classification.2016

    • Author(s)
      Wimalawarne, K., Tomioka, R., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 28 Pages: 686-715

    • Peer Reviewed / Acknowledgement Compliant / Int'l Joint Research
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Trial and error: Using previous experiences as simulation models in humanoid motor learning.2016

    • Author(s)
      Sugimoto, N., Tangkaratt, V., Wensveen, T., Zhao, T., Sugiyama, M., & Morimoto, J.
    • Journal Title

      IEEE Robotics & Automation Magazine

      Volume: 23 Pages: 96-105

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] An online policy gradient algorithm for Markov decision processes with continuous states and actions.2016

    • Author(s)
      Ma, Y., Zhao, T., Hatano, K., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 28 Pages: 563-593

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Computationally efficient class-prior estimation under class balance change using energy distance2016

    • Author(s)
      Kawakubo, H., du Plessis, M. C., & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E99-D Pages: 176-186

    • NAID

      130005116200

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Multitask principal component analysis2016

    • Author(s)
      I. Yamane, F. Yger, M. Berar, M. Sugiyama
    • Journal Title

      Proceedings of the 8th Asian Conference on Machine Learning

      Volume: 63 Pages: 302-317

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] Model-based reinforcement learning with dimension reduction2016

    • Author(s)
      Tangkaratt, V., Morimoto, J., & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 84 Pages: 1-16

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Regularized multi-task learning for multi-dimensional log-density gradient estimation2016

    • Author(s)
      I. Yamane, H. Sasaki, and, M. Sugiyama
    • Journal Title

      Neural Computation

      Volume: 28 Issue: 7 Pages: 1388-1410

    • DOI

      10.1162/neco_a_00844

    • NAID

      110009971442

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] Importance-weighted covariance estimation for robust common spatial pattern2015

    • Author(s)
      A. Balzi, F. Yger, and M. Sugiyama
    • Journal Title

      Pattern Recognition Letters

      Volume: 68 Pages: 139-145

    • DOI

      10.1016/j.patrec.2015.09.003

    • NAID

      110009971424

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] 相互情報量を用いた機械学習とそのロボティクスへの応用2015

    • Author(s)
      杉山 将, 入江 清, 友納 正裕
    • Journal Title

      日本ロボット学会誌

      Volume: 33 Pages: 86-91

    • NAID

      130005065137

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Bandit-based task assignment for heterogeneous crowdsourcing2015

    • Author(s)
      Zhang, H., Ma, Y., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 27 Pages: 2447-2475

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Direct density ratio estimation with convolutional neural networks with application in outlier detection2015

    • Author(s)
      H. Nam, and M. Sugiyama
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E98-D

    • NAID

      130005067754

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] Direct Density Ratio Estimation with Convolutional Neural Networks with Application in Outlier Detection2015

    • Author(s)
      H. Nam and M. Sugiyama
    • Journal Title

      IEICE Trans. Inf. & Syst.

      Volume: E98.D Issue: 5 Pages: 1073-1079

    • DOI

      10.1587/transinf.2014EDP7335

    • NAID

      130005067754

    • ISSN
      0916-8532, 1745-1361
    • Language
      English
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] Online direct density-ratio estimation applied to inlier-based outlier detection2015

    • Author(s)
      du Plessis, M. C., Shiino, H., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 27 Pages: 1899-1914

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Direct conditional probability density estimation with sparse feature selection.2015

    • Author(s)
      Shiga, M., Tangkaratt, V., & Sugiyama, M.
    • Journal Title

      Machine Learning

      Volume: 100 Pages: 161-182

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Cross-domain matching with squared-loss mutual information2015

    • Author(s)
      Yamada, M., Sigal, L., Raptis, M., Toyoda, M., Chang, Y., & Sugiyama, M.
    • Journal Title

      IEEE Transactions on Pattern Analysis and Machine Intelligence

      Volume: 37 Pages: 1764-1776

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Least-squares independence regression for non-linear causal inference under non-Gaussian noise.2014

    • Author(s)
      Yamada, M., Sugiyama, M., & Sese, J.
    • Journal Title

      Machine Learning

      Volume: 96 Pages: 249-267

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Information-theoretic semi-supervised metric learning via entropy regularization2014

    • Author(s)
      G. Niu, B. Dai, B., M. Yamada, and M. Sugiyama,
    • Journal Title

      Neural Computation

      Volume: 26 Issue: 8 Pages: 1717-1762

    • DOI

      10.1162/neco_a_00614

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26280054
  • [Journal Article] Semi-supervised learning of class balance under class-prior change by distribution matching2014

    • Author(s)
      du Plessis, M. C. & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 50 Pages: 110-119

    • NAID

      110009545983

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Information-maximization clustering based on squared-loss mutual information2014

    • Author(s)
      Sugiyama, M., Niu, G., Yamada, M., Kimura, M., & Hachiya, H.
    • Journal Title

      Neural Computation

      Volume: 26 Pages: 84-131

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Unsupervised dimension reduction via least-squares quadratic mutual information.2014

    • Author(s)
      Sainui, J. & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E97-D Pages: 2806-2809

    • NAID

      110009971453

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] 非定常環境下での学習:共変量シフト適応,クラスバランス変化適応,変化検知.2014

    • Author(s)
      杉山 将, 山田 誠, ドゥ・プレシ マーティヌス・クリストフェル, リウ ソン.
    • Journal Title

      日本統計学会論文誌

      Volume: 44 Pages: 113-136

    • NAID

      110009864639

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Constrained least-squares density-difference estimation.2014

    • Author(s)
      Nguyen, T. D., du Plessis, M. C., Kanamori, T., & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E97-D Pages: 1822-1829

    • NAID

      130004519278

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Statistical analysis of distance estimators with density differences and density ratios2014

    • Author(s)
      Kanamori, T. & Sugiyama, M.
    • Journal Title

      Entropy

      Volume: 16 Pages: 921-942

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Class prior estimation from positive and unlabeled data.2014

    • Author(s)
      du Plessis, M. C. & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E97-D Pages: 1358-1362

    • NAID

      130004519253

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Information-theoretic semi-supervised metric learning via entropy regularization.2014

    • Author(s)
      Niu, G., Dai, B., Yamada, M., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 26 Pages: 1717-1762

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Computationally efficient estimation of squared-loss mutual information with multiplicative kernel models.2014

    • Author(s)
      Sakai, T. & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E97-D Pages: 968-971

    • NAID

      110009886357

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation.2014

    • Author(s)
      Tangkaratt, V., Mori, S., Zhao, T., Morimoto, J., & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 57 Pages: 128-140

    • NAID

      110009713016

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Semi-supervised information-maximization clustering.2014

    • Author(s)
      Calandriello, D., Niu, G., & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 57 Pages: 103-111

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Constrained least-squares density-difference estimation.2014

    • Author(s)
      Nguyen, T. D., du Plessis, M. C., Kanamori, T., & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E97-D Pages: 1822-1829

    • NAID

      130004519278

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Tree-based ensemble multi-task learning method for classification and regression2014

    • Author(s)
      J. Simm, I. Magrans de Abril, and M. Sugiyama
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E97-D

    • NAID

      130004841806

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Direct approximation of quadratic mutual information and its application to dependence-maximization clustering.2013

    • Author(s)
      Sainui, J. & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E96-D Pages: 2282-2285

    • NAID

      130004519212

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Feature selection via l1-penalized squared-loss mutual information.2013

    • Author(s)
      Jitkrittum, W., Hachiya, H., & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E96-D Pages: 1513-1524

    • NAID

      130003370928

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Computationally efficient multi-label classification by least-square probabilistic classifiers2013

    • Author(s)
      H. Nam, H. Hachiya, and M. Sugiyama
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E96-D Pages: 1871-1874

    • NAID

      10031100385

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Densitydifference estimation2013

    • Author(s)
      M. Sugiyama, T. Suzuki, T. Kanamori, T., M. C. du Plessis, S. Liu, and I. Takeuchi
    • Journal Title

      Neural Computation

      Volume: Vol.25,No.10 Pages: 2734-2775

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Infinitesimal annealing for training semi-supervised support vector machines2013

    • Author(s)
      K. Ogawa, M. Imamura, I. Takeuchi, and M. Sugiyama
    • Journal Title

      International Conference on Machine Learning

      Volume: - Pages: 897-905

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Density-difference estimation2013

    • Author(s)
      M. Sugiyama, T. Suzuki, T. Kanamori, M. C. du Plessis, S. Liu, and I. Takeuchi
    • Journal Title

      Neural Computation

      Volume: 25 Issue: 10 Pages: 2734-2775

    • DOI

      10.1162/neco_a_00492

    • NAID

      110009588474

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069, KAKENHI-PROJECT-24500340, KAKENHI-PROJECT-25730013
  • [Journal Article] Artist agent: A reinforcement learning approach to automatic stroke generation in oriental ink painting.2013

    • Author(s)
      Xie, N., Hachiya, H., & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E96-D Pages: 1134-1144

    • NAID

      10031193966

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] 変分ベイズ学習理論の最新動向.2013

    • Author(s)
      中島 伸一, 杉山 将.
    • Journal Title

      日本応用数理学会論文誌

      Volume: 23 Pages: 453-483

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Efficient sample reuse in policy gradients with parameter-based exploration.2013

    • Author(s)
      Zhao, T., Hachiya, H., Tangkaratt, V., Morimoto, J., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 25 Pages: 1512-1547

    • NAID

      110009545976

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Variational Bayesian sparse additive matrix factorization.2013

    • Author(s)
      Nakajima, S., Sugiyama, M., & Babacan, D.
    • Journal Title

      Machine Learning

      Volume: 92 Pages: 319-347

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] 確率分布間の距離推定:機械学習分野における最新動向2013

    • Author(s)
      杉山 将
    • Journal Title

      日本応用数理学会論文誌

      Volume: 23 Pages: 439-452

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] High-dimensional feature selection by feature-wise kernelized lasso.2013

    • Author(s)
      Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P., & Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 26 Pages: 185-207

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Global analytic solution of fully-observed variational Bayesian matrix factorization.2013

    • Author(s)
      Nakajima, S., Sugiyama, M., Babacan, D., & Tomioka, R.
    • Journal Title

      Journal of Machine Learning Research

      Volume: 14 Pages: 1-37

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Learning under non-stationarity: Covariate shift and class-balance change.2013

    • Author(s)
      Sugiyama, M., Yamada, M., & du Plessis, M. C.
    • Journal Title

      WIREs Computational Statistics

      Volume: - Pages: 1-13

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Journal Article] Computationally efficient multi-label classification by least-squares probabilistic classifiers2013

    • Author(s)
      H. Nam, H. Hachiya, and M. Sugiyama
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: Vol.E96-D,No.8 Pages: 1871-1874

    • NAID

      10031100385

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Least-squares probabilistic classifier : A computationally efficient alternative to kernel logistic regression2012

    • Author(s)
      M.Sugiyama, H.Hachiya, M.Yamada, J.Simm, H.Nam
    • Journal Title

      Proceedings of International Workshop on Statistical Machine Learning for Speech Processing

      Volume: (CD-ROM) Pages: 1-10

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Improving importance estimation in pool-based batch active learning for approximate linear regression.2012

    • Author(s)
      Kurihara, N. & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 36 Pages: 73-82

    • NAID

      110009545986

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Multi-task approach to reinforcement learning for factored-state Markov decision problems.2012

    • Author(s)
      Simm, J., Sugiyama, M., & Hachiya, H.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: .E95-D Pages: 2426-2437

    • NAID

      10031142861

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Analysis and improvement of policy gradient estimation.2012

    • Author(s)
      Zhao, T., Hachiya, H., Niu, G., & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 26 Pages: 118-129

    • NAID

      110008746381

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Density difference estimation2012

    • Author(s)
      M. Sugiyama
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 25 Pages: 692-700

    • NAID

      110009588474

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23300069
  • [Journal Article] Early stopping heuristics in pool-based incremental active learning for least-squares probabilistic classifier.2012

    • Author(s)
      Kobayashi, T. & Sugiyama, M.
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E95-D Pages: 2065-2073

    • NAID

      10031126715

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Super-linear convergence of dual augmented Lagrangian algorithm for sparsity regularized estimation2011

    • Author(s)
      Tomioka, R., Suzuki, T., & Sugiyama, M.
    • Journal Title

      Journal of Machine Learning Research

      Volume: 12 Pages: 1537-1586

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Target neighbor consistent feature weighting for nearest neighbor classification2011

    • Author(s)
      Takeuchi, I. & Sugiyama, M.
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 24 Pages: 576-584

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Reward weighted regression with sample reuse for direct policy search in reinforcement learning2011

    • Author(s)
      Hachiya, H., Peters, J., & Sugiyama M.
    • Journal Title

      Neural Computation

      Volume: vol.23, no.11 Pages: 2798-2832

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Analysis and improvement of policy gradient estimation.2011

    • Author(s)
      Zhao, T., Hachiya, H., Niu, G., & Sugiyama, M.
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 24 Pages: 262-270

    • NAID

      110008746381

    • Peer Reviewed
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Journal Article] Lighting condition adaptation for perceived age estimation2011

    • Author(s)
      Ueki, K., Sugiyama, M., & Ihara, Y.
    • Journal Title

      Transactions on Information and Systems

      Volume: vol.E94-D, no.2 Pages: 392-395

    • NAID

      130000453904

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Reward weighted regression with sample reuse for direct policy search in reinforcement learning2011

    • Author(s)
      Hachiya, H., Peters, J., Sugiyama, M.
    • Journal Title

      Neural Computation

      Volume: 23 Pages: 2798-2832

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Efficient exploration through active learning for value function approximation in reinforcement learning.2010

    • Author(s)
      Akiyama, T., Hachiya, H., Sugiyama, M.
    • Journal Title

      NeuralNetworks vol.23, no.5

      Pages: 639-648

    • NAID

      130008079582

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2010/API.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Semi supervised speaker identification under covariate shift.2010

    • Author(s)
      Yamada, M., Sugiyama, M., Matsui, T.
    • Journal Title

      Signal Processing

      Volume: 90 Pages: 2353-2361

    • NAID

      130008079628

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Semi-supervised speaker identification under covariate shift2010

    • Author(s)
      Yamada, M., Sugiyama, M., & Matsui, T.
    • Journal Title

      Signal Processing

      Volume: vol.90, no.8 Pages: 2353-2361

    • NAID

      130008079628

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Efficient exploration through active learning for value function approximation in reinforcement learning2010

    • Author(s)
      Akiyama, T., Hachiya, H., & Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: vol.23, no.5 Pages: 639-648

    • NAID

      130008079582

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Application of covariate shift adaptation techniques in brain computer interfaces.2010

    • Author(s)
      Li, Y., Kambara, H., Koike, Y., Sugiyama, M.
    • Journal Title

      IEEE Trans.on Biomedical Engineering

      Volume: 57 Pages: 1318-1324

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Application of covariate shift adaptation techniques in brain computer interfaces2010

    • Author(s)
      Li, Y., Kambara, H., Koike, Y., & Sugiyama, M.
    • Journal Title

      IEEE Transactions on Biomedical Engineering

      Volume: vol.57, no.6 Pages: 1318-1324

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Application of covariate shift adaptation techniques in brain computer interfaces.2010

    • Author(s)
      Li, Y., Kambara, H., Koike, Y., Sugiyama, M.
    • Journal Title

      IEEE Transactions on Biomedical Engineering vol.57, no.6

      Pages: 1318-1324

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2010/BIWLDA.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Dimensionality reduction for density ratio estimation in high-dimensional spaces2010

    • Author(s)
      Sugiyama, M., Kawanabe, M., & Chui, P. L.
    • Journal Title

      Neural Networks

      Volume: vol.23, no.1 Pages: 44-59

    • NAID

      130008079586

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Semi-supervised speaker identification under covariate shift.2010

    • Author(s)
      Yamada, M., Sugiyama, M., Matsui, T.
    • Journal Title

      Signal Processing vol.90, no.8

      Pages: 2353-2361

    • NAID

      130008079628

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2010/IWKLR.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Efficient exploration through active learning for value function approximation in reinforcement learning.2010

    • Author(s)
      Akiyama, T., Hachiya, H., Sugiyama, M.
    • Journal Title

      Neural Networks

      Volume: 23 Pages: 639-648

    • NAID

      130008079582

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] A least-squares approach to direct importance estimation.2009

    • Author(s)
      Kanamori, T., Hido, S., Sugiyama, M.
    • Journal Title

      Journal of Machine Learning Research vol.10 (Jul.)

      Pages: 1391-1445

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2009/LSIF.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] A density-ratio framework for statistical data processing2009

    • Author(s)
      Sugiyama, M., Kanamori, T., Suzuki, T., Hido, S., Sese, J., Takeuchi, I., Wang, L.
    • Journal Title

      IPSJ Transactions on Computer Vision and Applications 1

      Pages: 183-208

    • NAID

      130000140299

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection2009

    • Author(s)
      T. Kanamori, S. Hido, M. Sugiyama
    • Journal Title

      Advances in Neural Information Processing Systems 21

      Pages: 809-816

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Adaptive importance sampling for value function approximation in off-policy reinforcement learning2009

    • Author(s)
      Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J
    • Journal Title

      Neural Networks 22

      Pages: 1399-1410

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Adaptive importance sampling for value function approximation in off-policy reinforcement learning2009

    • Author(s)
      Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J.
    • Journal Title

      Neural Networks

      Volume: vol.22, no.10 Pages: 1399-1410

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Direct density ratio estimation for large-scale covariate shift adaptation2009

    • Author(s)
      Tsuboi, Y., Kashima, H., Hido, S., Bickel, S., & Sugiyama, M.
    • Journal Title

      Journal of Information Processing

      Volume: vol.17 Pages: 138-155

    • NAID

      130000120692

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Adaptive importance sampling for value function approximation in off-policy reinforcement learning2009

    • Author(s)
      H. Hachiya, T. Akiyama, M. Sugiyama, J. Peters
    • Journal Title

      Neural Networks (In press)

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] A least-squares approach to direct importance estimation2009

    • Author(s)
      Kanamori, T., Hido, S., Sugiyama, M.
    • Journal Title

      Journal of Machine Learning Research 10

      Pages: 1391-1445

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Pool-based active learning in approximate linear regression.2009

    • Author(s)
      Sugiyama, M., Nakajima, S.
    • Journal Title

      Machine Learning vol.75, no.3

      Pages: 249-274

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2009/PALICE.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Adaptive importance sampling for value function approximation in off-policy reinforcement learning.2009

    • Author(s)
      Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.
    • Journal Title

      Neural Networks vol.22, no.10

      Pages: 1399-1410

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2009/SRPI.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] A batch ensemble approach to active learning with model selection2009

    • Author(s)
      M. Sugiyama, N. Rubens
    • Journal Title

      Neural Networks 50

      Pages: 1278-1286

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Direct density ratio estimation for large scale covariate shift adaptation2009

    • Author(s)
      Y. Tsuboi, H. Kashima, S. Hido, S. Bickel,and M. Sugiyama
    • Journal Title

      IPSJ Journal 50

      Pages: 1-19

    • NAID

      130000120692

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] A least-squares approach to direct importance estimation2009

    • Author(s)
      Kanamori, T., Hido, S., & Sugiyama, M.
    • Journal Title

      Journal of Machine Learning Research

      Volume: vol.10 Pages: 1391-1445

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Direct density ratio estimation for large-scale covariate shift adaptation2009

    • Author(s)
      Y. Tsuboi, H, Kashima, S. Hido, S. Bickel, M. Sugiyama
    • Journal Title

      IPSJ Journal 50

      Pages: 1-19

    • NAID

      130000120692

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] A density-ratio framework for statistical data processing2009

    • Author(s)
      Sugiyama, M., Kanamori, T., Suzuki, T., Hido, S., Sese, J., Takeuchi, I., & Wang, L.
    • Journal Title

      IPSJ Transactions on Computer Vision and Applications

      Volume: vol.1 Pages: 183-208

    • NAID

      130000140299

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Direct importance estimation with Gaussian mixture models2009

    • Author(s)
      Yamada, M. & Sugiyama, M
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: vol.E92-D, no.10 Pages: 2159-2162

    • NAID

      10026811983

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Direct importance estimation for covariate shift adaptation.2008

    • Author(s)
      Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bunau, P., Kawanabe, M.
    • Journal Title

      Annals of the Institute of Statistical Mathematics vol.60, no.4

      Pages: 699-746

    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/KLIEP.pdf

    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Direct importance estimation with model selection and its application to covariate shift adaptation2008

    • Author(s)
      M. Sugiyama, S. Nakajima, H. Kashima, von P. Bnau and M. Kawanabe
    • Journal Title

      Advances in Neural Information Processing Systems 20

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Direct importance estimation for covariate shift adaptation2008

    • Author(s)
      M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, p. von Beunau, M. Kawanabe
    • Journal Title

      Annals of the Institute of Statistical Mathematics 60

      Pages: 699-746

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Direct importance estimation for covariate shift adaptation2008

    • Author(s)
      Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bunau, P., & Kawanabe, M.
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: vol.60, no.4 Pages: 699-746

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] Direct importance estimation for covariate shift adaptation.2008

    • Author(s)
      Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Biinau, P. & Kawanabe, M
    • Journal Title

      Annals of the Institute of Statistical Mathematics 60(4)

      Pages: 699-746

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] A batch ensemble approach to active learning with model selection2008

    • Author(s)
      Sugiyama, M. & Rubens, N.
    • Journal Title

      Neural Networks

      Volume: vol.21, no.9 Pages: 1278-1286

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Journal Article] A batch ensemble approach to active learning with model selection2008

    • Author(s)
      M. Sugiyama and N. Rubens
    • Journal Title

      Neural Networks 21

      Pages: 1278-1286

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Pool-based agnostic experiment design in linear regression.2008

    • Author(s)
      M. Sugiyama, S. Nakajima
    • Journal Title

      Lecture Notes in Computer Science 5212

      Pages: 406-422

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Covariate shift adaptation by importance weighted cross validation.2007

    • Author(s)
      Sugiyama, M., Krauledat, M., & Moller, K.-R.
    • Journal Title

      Journal of Machine Learning Research 8

      Pages: 985-1005

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Generalization error estimation for non-linear learning methods2007

    • Author(s)
      M. Sugiyama
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E90-A

      Pages: 1496-1499

    • NAID

      110007538081

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] A new algorithm of non-Gaussian component analysis with radial kernel functions2007

    • Author(s)
      Kawanabe, M., Sugiyama, M., Blanchard, G., Muller, K.-R
    • Journal Title

      Annals of the Institute of Statistical Mathematics vol.59,no.1

      Pages: 57-75

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis2007

    • Author(s)
      M. Sugiyama
    • Journal Title

      Journal of Machine Learning Research 8

      Pages: 1027-1061

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Generalization error estimation for non-linear learning methods.2007

    • Author(s)
      Sugiyama, M.
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics. Communications and Computer Sciences E90-A

      Pages: 1496-1499

    • NAID

      110007538081

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Analytic optimization of adaptive ridge parameters based on regularized subspace information criterion.2007

    • Author(s)
      Gokita, S., Sugiyama, M., & Sakurai, K
    • Journal Title

      IEICE Transactions on Fundamentals of Electronic, Communications and Computer Sciences E90-A

      Pages: 2584-2592

    • NAID

      110007537996

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Covariate shift adaptation by importance weighted cross validation2007

    • Author(s)
      M. Sugiyama, M. Krauledat, K.-R. Mueller
    • Journal Title

      Journal of Machine Learning Research 8

      Pages: 985-1005

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Local Fisher discriminant analysis for supervised dimensionality reduction2006

    • Author(s)
      Sugiyama, M.
    • Journal Title

      Proceedings of 23rd International Conference on Machine Learning, Pittsburgh, Pennsylvania, USA, 2006.6.25-29

      Pages: 905-912

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] 共変量シフト下での教師付き学習2006

    • Author(s)
      杉山 将
    • Journal Title

      日本神経回路学会誌 vol.13,no.3

      Pages: 111-118

    • NAID

      10018266940

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Mixture regression for covariate shift2006

    • Author(s)
      Storkey, A., Sugiyama, M
    • Journal Title

      Advances in Neural Information Processing Systems 19

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Active learning in approximately linear regression based on conditional expectation generalization error.2006

    • Author(s)
      Sugiyama, M.
    • Journal Title

      Journal of Machine Learning Research 7.Jan

      Pages: 141-166

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] 共変量シフト下での教師付き学習2006

    • Author(s)
      杉山将
    • Journal Title

      日本神経回路学会誌 13・3

      Pages: 111-118

    • NAID

      10018266940

    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Importance-weighted cross-validation for covariate shift2006

    • Author(s)
      Sugiyama, M., Blankertz, B., Krauledat, M., Donehege, G., Muller, K.-R
    • Journal Title

      Pattern Recognition, Lecture Notes in Computer Science vol.4147

      Pages: 354-363

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Importance-weighted cross-validation for covariate shift2006

    • Author(s)
      Sugiyama, M, Blankertz, B, Krauledat, M, Donehege G, Mller, K.-R
    • Journal Title

      Pattern Recognition, Lecture Notes in Computer Science 47

      Pages: 354-363

    • Data Source
      KAKENHI-PROJECT-18300057
  • [Journal Article] Obtaining the best linear unbiased estimator of noisy signals by non-Gaussian component analysis2006

    • Author(s)
      Sugiyama, M., Kawanabe, M., Blanchard, G., Spokoiny, V., Muller, K.-R
    • Journal Title

      Proceedings of 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 2006.5.14-19. vol,3

      Pages: 608-611

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Model selection under covariate shift.2005

    • Author(s)
      Sugiyama, M., Mueller, K.-R.
    • Journal Title

      Artificial Neural Networks : Formal Models and Their Applications 3697

      Pages: 235-240

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Generalization error estimation under covariate shift.2005

    • Author(s)
      Sugiyama, M., Mueller, K.-R.
    • Journal Title

      第8回情報論的学習理論ワークショップ予稿集

      Pages: 21-26

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] An active learning algorithm for approximately correct models.2005

    • Author(s)
      Sugiyama, M.
    • Journal Title

      第8回情報論的学習理論ワークショップ予稿集

      Pages: 57-62

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] 正則化汎化誤差推定量を用いた解析的モデル最適化.2005

    • Author(s)
      櫻井啓介, 杉山 将
    • Journal Title

      画像の認識・理解シンポジウム2005(MIRU2005)論文集

      Pages: 1013-1020

    • Data Source
      KAKENHI-PROJECT-17700142
  • [Journal Article] Perturbation analysis of a generalization error estimator2004

    • Author(s)
      M.Sugiyama, Y.Okabe, H.Ogawa
    • Journal Title

      Neural Information Processing 2(2)

      Pages: 33-38

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-14380158
  • [Journal Article] Perturbation analysis of a generalization error estimator2004

    • Author(s)
      M.Sugiyama, Y.Okabe, H.Ogawa
    • Journal Title

      Neural Information Processing 2・2

      Pages: 33-38

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-14380158
  • [Journal Article] Trading variance reduction with unbiasedness : The regularized subspace information criterion for robust model selection in kernel regression2004

    • Author(s)
      M.Sugiyama, M.Kawanabe, K.-R.Muller
    • Journal Title

      Neural Computation 16・5

      Pages: 1077-1104

    • Description
      「研究成果報告書概要(和文)」より
    • Data Source
      KAKENHI-PROJECT-14380158
  • [Journal Article] Trading variance reduction with unbiasedness : The regularized subspace information criterion for robust model selection in kernel regression2004

    • Author(s)
      M.Sugiyama, M.Kawanabe, K.-R.Muller
    • Journal Title

      Neural Computation 16(59

      Pages: 1077-1104

    • Description
      「研究成果報告書概要(欧文)」より
    • Data Source
      KAKENHI-PROJECT-14380158
  • [Journal Article] Adaptive importance sampling for value function approximation in off-policy reinforcement learning

    • Author(s)
      Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J
    • Journal Title

      Neural Network

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Positive-unlabeled classification under class-prior shift: A prior-invariant approach based on density ratio estimation2021

    • Author(s)
      Shota Nakajima, Masashi Sugiyama
    • Organizer
      t IJCAI2021 Weakly Supervised Representation Learning Workshop
    • Data Source
      KAKENHI-PROJECT-20H04206
  • [Presentation] Bayesian posterior approximation via greedy particle optimization.2019

    • Author(s)
      Futami, F., Cui, Z., Sato, I., & Sugiyama, M.
    • Organizer
      AAAI Conference on Artificial Intelligence (AAAI2019)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Dueling bandits with qualitative feedback.2019

    • Author(s)
      Xu, L., Honda, J., & Sugiyama, M.
    • Organizer
      AAAI Conference on Artificial Intelligence (AAAI2019)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Bayesian nonparametric Poisson-process allocation for time-sequence modeling2018

    • Author(s)
      Ding, H., Khan, M. E., Sato, I., & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Guide actor-critic for continuous control2018

    • Author(s)
      Tangkaratt, V., Abdolmaleki, A., & Sugiyama, M.
    • Organizer
      International Conference on Learning Representations (ICLR2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Variational inference for Gaussian process with panel count data.2018

    • Author(s)
      Ding, H., Lee, Y., Sato, I., & Sugiyama, M.
    • Organizer
      Conference on Uncertainty in Artificial Intelligence (UAI2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks.2018

    • Author(s)
      Tsuzuku, Y., Sato, I., & Sugiyama, M.
    • Organizer
      Neural Information Processing Systems (NeurIPS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Fully adaptive algorithm for pure exploration in linear bandits.2018

    • Author(s)
      Xu, L., Honda, J., & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Continuous-time value function approximation in reproducing kernel Hilbert spaces.2018

    • Author(s)
      Ohnishi, M., Yukawa, M., Johansson, M., & Sugiyama, M.
    • Organizer
      Neural Information Processing Systems (NeurIPS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Guide actor-critic for continuous control.2018

    • Author(s)
      Tangkaratt, V., Abdolmaleki, A., & Sugiyama, M.
    • Organizer
      International Conference on Learning Representations (ICLR2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Fully adaptive algorithm for pure exploration in linear bandits2018

    • Author(s)
      Xu, L., Honda, J., & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Analysis of minimax error rate for crowdsourcing and its application to worker clustering model.2018

    • Author(s)
      Imamura, H., Sato, I., & Sugiyama, M.
    • Organizer
      International Conference on Machine Learning (ICML2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Variational inference based on robust divergences2018

    • Author(s)
      Futami, F., Sato, I., & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Hierarchical policy search via return-weighted density estimation2018

    • Author(s)
      Osa, T. & Sugiyama, M.
    • Organizer
      AAAI Conference on Artificial Intelligence (AAAI2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Bayesian nonparametric Poisson-process allocation for time-sequence modeling.2018

    • Author(s)
      Ding, H., Khan, M. E., Sato, I., & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Policy search with high-dimensional context variables2017

    • Author(s)
      Tangkaratt, V., van Hoof, H., Parisi, S., Neumann, G., Peters, J., & Sugiyama, M.
    • Organizer
      Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI2017)
    • Place of Presentation
      San Francisco, California, USA
    • Year and Date
      2017-02-04
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Expectation propagation for t-exponential family using q-algebra2017

    • Author(s)
      Futami, F., Sato, I., & Sugiyama, M.
    • Organizer
      Neural Information Processing Systems (NIPS2017)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Good arm identification from bandit feedback2017

    • Author(s)
      Kano, H., Honda, J., Sakamaki, K., Matsuura, K., Nakamura, A., & Sugiyama, M.
    • Organizer
      2017 Workshop on Information-Based Induction Sciences (IBIS2017)
    • Data Source
      KAKENHI-PROJECT-17H00757
  • [Presentation] Least-squares log-density gradient clustering for Riemannian manifolds2017

    • Author(s)
      Ashizawa, M., Sasaki, H., Sakai, T., & Sugiyama, M.
    • Organizer
      29th International Conference on Artificial Intelligence and Statistics (AISTATS2017)
    • Place of Presentation
      Fort Lauderdale, Florida, USA
    • Year and Date
      2017-04-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Non-Gaussian component analysis with log-density gradient estimation2016

    • Author(s)
      Sasaki, H., Niu, G., & Sugiyama, M.
    • Organizer
      19th International Conference on Artificial Intelligence and Statistics (AISTATS2016)
    • Place of Presentation
      Cadiz, Spain
    • Year and Date
      2016-05-09
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Semi-supervised sufficient dimension reduction under class-prior change2016

    • Author(s)
      Kawakubo, H. & Sugiyama, M.
    • Organizer
      Conference on Technologies and Applications of Artificial Intelligence (TAAI2016)
    • Place of Presentation
      Hsinchu, Taiwan
    • Year and Date
      2016-11-25
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Modal regression via direct log-density derivative estimation2016

    • Author(s)
      Sasaki, H., Ono, Y., & Sugiyama, M.
    • Organizer
      23rd International Conference on Neural Information Processing (ICONIP2016)
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2016-10-16
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Geometry-aware stationary subspace analysis2016

    • Author(s)
      Horev, I., Yger, F., & Sugiyama, M.
    • Organizer
      8th Asian Conference on Machine Learning (ACML2016)
    • Place of Presentation
      Hamilton, New Zealand
    • Year and Date
      2016-11-16
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Direct density-derivative estimation and its application in KL-divergence approximation.2015

    • Author(s)
      Sasaki, H., Noh, Y.-K., & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2015)
    • Place of Presentation
      San Diego, California, USA
    • Year and Date
      2015-05-09
    • Int'l Joint Research
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Stroke-based stylization learning and rendering with inverse reinforcement learning.2015

    • Author(s)
      Xie, N., Zhao, T., Tian, F., Zhang, X., & Sugiyama, M.
    • Organizer
      International Joint Conference on Artificial Intelligence (IJCAI2015)
    • Place of Presentation
      Buenos Aires, Argentina
    • Year and Date
      2015-07-25
    • Int'l Joint Research
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Geometry-aware principal component analysis for symmetric positive definite matrices2015

    • Author(s)
      Horev, I., Yger, F., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Geometry-aware principal component analysis for symmetric positive definite matrices.2015

    • Author(s)
      Horev, I., Yger, F., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Class-prior estimation for learning from positive and unlabeled data2015

    • Author(s)
      du Plessis, M. C., Niu, G., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Regularized policy gradients: Direct variance reduction in policy gradient estimation.2015

    • Author(s)
      Zhao, T., Niu, G., Xie, N., Yang, J., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Target shift adaptation in supervised learning2015

    • Author(s)
      Nguyen, T. D., du Plessis, M. C., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Sufficient dimension reduction via direct estimation of the gradients of logarithmic conditional densities2015

    • Author(s)
      Sasaki, H., Tangkaratt, V., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Sufficient dimension reduction via direct estimation of the gradients of logarithmic conditional densities.2015

    • Author(s)
      Sasaki, H., Tangkaratt, V., & Sugiyama, M.
    • Organizer
      Asian Conference on Machine Learning (ACML2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Int'l Joint Research
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Global solver and its efficient approximation for variational Bayesian low-rank subspace clustering.2013

    • Author(s)
      Nakajima, S., Takeda, A., Babacan, D., Sugiyama, M., & Takeuchi, I.
    • Organizer
      Neural Information Processing Systems (NIPS2013)
    • Place of Presentation
      Lake Tahoe, Nevada
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Parametric task learning.2013

    • Author(s)
      Takeuchi, I., Hongo, T., Sugiyama, M., & Nakajima, S.
    • Organizer
      Neural Information Processing Systems (NIPS2013)
    • Place of Presentation
      Lake Tahoe, Nevada
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Clustering unclustered data: Unsupervised binary labeling of two datasets having different class balances.2013

    • Author(s)
      du Plessis, M. C., Niu, G., & Sugiyama, M.
    • Organizer
      Conference on Technologies and Applications of Artificial Intelligence (TAAI2013),
    • Place of Presentation
      Taipei, Taiwan
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Squared-loss mutual information regularization.2013

    • Author(s)
      Niu, G., Jitkrittum, W., Dai, B., Hachiya, H., & Sugiyama, M.
    • Organizer
      30th International Conference on Machine Learning (ICML2013)
    • Place of Presentation
      Atlanta, Georgia, USA
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Feature selection via l1-penalized squared-loss mutual information2012

    • Author(s)
      Jitkrittum, W., Hachiya, H., & Sugiyama, M.
    • Organizer
      電子情報通信学会IBISML研究会, pp.139-146
    • Place of Presentation
      東京
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Artist agent: A reinforcement learning approach to automatic stroke generation in oriental ink painting.2012

    • Author(s)
      Xie, N., Hachiya, H., & Sugiyama, M.
    • Organizer
      29th International Conference on Machine Learning (ICML2012),
    • Place of Presentation
      Edinburgh, Scotland
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Fast learning rate of multiple kernel learning: Trade-off between sparsity and smoothness.2012

    • Author(s)
      Suzuki, T. & Sugiyama, M.
    • Organizer
      Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS2012),
    • Place of Presentation
      La Palma, Canary Islands
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Sparse additive matrix factorization for robust PCA and its generalization.2012

    • Author(s)
      Nakajima, S., Sugiyama, M., & Babacan, D.
    • Organizer
      the Fourth Asian Conference on Machine Learning (ACML2012),
    • Place of Presentation
      Singapore
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Perfect dimensionality recovery by variational Bayesian PCA.2012

    • Author(s)
      Nakajima, S., Tomioka, R., Sugiyama, M., & Babacan, D.
    • Organizer
      Neural Information Processing Systems (NIPS2012),
    • Place of Presentation
      Lake Tahoe, Nevada, USA
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Perceived age estimation under lighting condition change by covariate shift adaptation.2010

    • Author(s)
      Ueki, K., Sugiyama, M., Ihara, Y.
    • Organizer
      20th International Conference on Pattern Recognition(ICPR2010)
    • Place of Presentation
      イスタンブール,トルコ
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Perceived age estimation under lighting condition change by covariate shift adaptation2010

    • Author(s)
      Ueki, K., Sugiyama, M., & Ihara, Y.
    • Organizer
      In Proceedings of 20th International Conference on Pattern Recognition(ICPR2010)
    • Place of Presentation
      Istanbul, Turkey
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Perceived age estimation under lighting condition change by covariate shift adaptation.2010

    • Author(s)
      Ueki, K., Sugiyama, M., Ihara, Y.
    • Organizer
      20th International Conferenceon Pattern Recognition (ICPR2010)
    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2010/ICPR2010a.pdf

    • Place of Presentation
      Istanbul, Turkey
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Automatic audio tagging using covariate shift adaptation2010

    • Author(s)
      Wichern, G., Yamada, M., Thornburg, H., Sugiyama, M., & Spanias, A.
    • Organizer
      In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP2010)
    • Place of Presentation
      Dallas, Texas, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Active policy iteration: Efficient exploration through active learning for value function approximation in reinforcement learning.2009

    • Author(s)
      Akiyama, T., Hachiya, H., Sugiyama, M.
    • Organizer
      Twenty-FirstInternational Joint Conference onArtificial Intelligence (IJCAI2009)
    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2009/IJCAI2009.pdf

    • Place of Presentation
      Pasadena, California
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Active policy iteration : Efficient exploration through active learning for value function approximation in reinforcement learning2009

    • Author(s)
      Akiyama, T., Hachiya, H., & Sugiyama, M
    • Organizer
      In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence(IJCAI2009)
    • Place of Presentation
      Pasadena, California, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Efficient sample reuse in EM-based policy search2009

    • Author(s)
      Hachiya, H., Peters, J., & Sugiyama, M.
    • Organizer
      Presented at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases(ECML-PKDD2009)
    • Place of Presentation
      Berlin, Springer, Bled, Slovenia
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Efficient sample reuse in EM-based policy search.2009

    • Author(s)
      Hachiya, H., Peters, J., Sugiyama, M.
    • Organizer
      European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases(ECML-PKDD2009)
    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2009/ECML-PKDD2009.pdf

    • Place of Presentation
      Bled, Slovenia
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] A framework of adaptive brain computer interfaces2009

    • Author(s)
      Li, Y., Koike, Y., & Sugiyama, M.
    • Organizer
      In Proceedings of the 2nd International Conference on BioMedical Engineering and Informatics(BMEI09)
    • Place of Presentation
      Tianjin, China
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Covariate shift adaptation for semi-supervised speaker identification2009

    • Author(s)
      Yamada, M., Sugiyama, M., & Matsui, T.
    • Organizer
      In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP2009)
    • Place of Presentation
      Taipei, Taiwan
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Active policy iteration : Efficient exploration through active learning for value function approximation in reinforcement learning2009

    • Author(s)
      Akiyama, T., Hachiya, H., Sugiyama, M.
    • Organizer
      Twenty-First International Joint Conference on Artificial Intelligence(IJCAI2009)
    • Place of Presentation
      Pasadena, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Direct importance estimation---A new versatile tool for statisti cal pattern recognition2008

    • Author(s)
      Sugiyama, M., Kanamori, T, Suzuki, T., Hido, S., Sese, J., Takeuchi, I., & Wang, L
    • Organizer
      Meeting on Image Recognition and Understanding 2008 (MIRU2008)
    • Place of Presentation
      長野
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Semi-supervised speaker identification under covariate shift2008

    • Author(s)
      Yamada, M. & Sugiyama, M
    • Organizer
      The Third International Workshop on Data-Mining and Statistical Science (DMSS2008)
    • Place of Presentation
      東京
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Active learning with model selection in linear regression2008

    • Author(s)
      Sugiyama, M. & Rubens, N
    • Organizer
      Proceedings of the Eighth SIAM International Conference on Data Mining(SDM2008)
    • Place of Presentation
      Atlanta, Georgia, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Pool-based agnostic experiment design in linear regression2008

    • Author(s)
      Sugiyama, M. & Nakajima, S
    • Organizer
      Presented at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases(ECML-PKDD2008)
    • Place of Presentation
      Berlin, Springer, Antwerp, Belgium
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection2008

    • Author(s)
      Kanamori, T., Hido, S., & Sugiyama, M.
    • Organizer
      In D. Koller, D. Schuurmans, Y. Bengio, and L. Botton(Eds.), Advances in Neural Information Processing Systems 21,(Presented at Neural Information Processing Systems(NIPS2008), Vancouver, British Columbia
    • Place of Presentation
      Cambridge, MA, MIT Press, Canada, Dec
    • Year and Date
      2008-08-13
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Direct density ratio estimation for large-scale covariate shift adaptation2008

    • Author(s)
      Tsuboi, Y., Kashima, H., Hido, S., Bickel, S., & Sugiyama, M.
    • Organizer
      Proceedings of the Eighth SIAM International Conference on Data Mining(SDM2008)
    • Place of Presentation
      Atlanta, Georgia, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Adaptive importance sampling with automatic model selection in value function approximation2008

    • Author(s)
      Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J
    • Organizer
      Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence(AAAI2008)
    • Place of Presentation
      Chicago, Illinois, USA
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection2008

    • Author(s)
      Kanamori, T., Hido, S., Sugiyama, M.
    • Organizer
      Neural Information Processing Systems (NIPS2008)
    • URL

      http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/NIPS2008.pdf

    • Place of Presentation
      Vancouver, Canada
    • Data Source
      KAKENHI-PROJECT-20680007
  • [Presentation] Supervised learning under covariate shift.2007

    • Author(s)
      Sugiyama, M.
    • Organizer
      13th Symposium on Sensing via Image Information,
    • Place of Presentation
      横浜,日本
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Presentation] KuUback-Leibler importance estimation procedure for covariate shift adaptation.2007

    • Author(s)
      Sugiyama, M., Nakajima, S., Kashima, H., von Bunau, P.& Kawanabe, M
    • Organizer
      the International Workshop on Data-Mining and Statistical Sciences
    • Place of Presentation
      東京,日本
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Presentation] Asymptotic Bayesian generalization error when training and test distributions are different.2007

    • Author(s)
      Yamazaki, K., Kawanabe, M., Watanabe, S. Sugiyama, M, & Muller, K.-R.
    • Organizer
      24th International Conference on Machine Learning
    • Place of Presentation
      オレゴン,アメリカ
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Presentation] Direct importance estimation with model selection and its application to covariate shift adaptation2007

    • Author(s)
      M. Sugiyama, S. Nakajima, H. Kashima, von P. Bnueau, M. Kawanabe
    • Organizer
      21th Annual Conference on Neural Information Processing Systems
    • Place of Presentation
      Vancouver, Canada
    • Year and Date
      2007-12-04
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Presentation] Direct importance estimation with model selection and its application to covariate shift adaptation.2007

    • Author(s)
      Sugiyama, M., Nakajima, S., Kashim a, H., von Bunau, P. & Kawanabe, M.
    • Organizer
      Advances in Neural Information Processing Systems
    • Place of Presentation
      バンクーバー,カナダ
    • Data Source
      KAKENHI-PROJECT-17700142
  • [Presentation] Value function approximation on non-linear manifolds for robot motor control2007

    • Author(s)
      M. Sugiyama, H. Hachiya, C. Towell, S. Vijayakumar
    • Organizer
      2007 IEEE International Conference on Robotics and Automation
    • Place of Presentation
      Rome, Italy
    • Year and Date
      2007-04-12
    • Data Source
      KAKENHI-PROJECT-18300057
  • [Presentation] Analysis of variational Bayesian latent Dirichlet allocation: Weaker sparsity than MAP.

    • Author(s)
      Nakajima, S., Sato, I., Sugiyama, M., Watanabe, K., & Kobayashi, H.
    • Organizer
      Neural Information Processing Systems (NIPS2014)
    • Place of Presentation
      Montreal, Quebec, Canada
    • Year and Date
      2014-12-08 – 2014-12-11
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Analysis of learning from positive and unlabeled data.

    • Author(s)
      du Plessis, M. C., Niu, G., & Sugiyama, M.
    • Organizer
      Neural Information Processing Systems (NIPS2014)
    • Place of Presentation
      Montreal, Quebec, Canada
    • Year and Date
      2014-12-08 – 2014-12-11
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Importance-weighted covariance estimation for robust common spatial pattern.

    • Author(s)
      Balzi, A., Yger, F., & Sugiyama, M.
    • Organizer
      Workshop on Information-Based Induction Sciences (IBIS2014)
    • Place of Presentation
      Nagoya, Japan
    • Year and Date
      2014-11-16 – 2014-11-19
    • Data Source
      KAKENHI-PROJECT-14F04730
  • [Presentation] Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence.

    • Author(s)
      Noh, Y.-K., Sugiyama, M., Liu, S., du Plessis, M. C., Park, F. C., & Lee, D. D.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2014)
    • Place of Presentation
      Reykjavik, Iceland
    • Year and Date
      2014-04-22 – 2014-04-24
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Efficient reuse of previous experiences in humanoid motor learning.

    • Author(s)
      Sugimoto, N., Tangkaratt, V., Wensveen, T., Zhao, T., Sugiyama, M., & Morimoto, J.
    • Organizer
      IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS2014)
    • Place of Presentation
      Madrid, Spain
    • Year and Date
      2014-11-18 – 2014-11-20
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Transductive learning with multi-class volume approximation.

    • Author(s)
      Niu, G., Dai, B., du Plessis, M. C., & Sugiyama, M.
    • Organizer
      International Conference on Machine Learning (ICML2014)
    • Place of Presentation
      Beijing, China,
    • Year and Date
      2014-06-21 – 2014-06-26
    • Data Source
      KAKENHI-PROJECT-25700022
  • [Presentation] Intrinsic principal component analysis for symmetric positive definite matrices.

    • Author(s)
      Horev, I, Yger, F., & Sugiyama, M.
    • Organizer
      Workshop on Information-Based Induction Sciences (IBIS2014)
    • Place of Presentation
      Nagoya, Japan
    • Year and Date
      2014-11-16 – 2014-11-19
    • Data Source
      KAKENHI-PROJECT-14F04730
  • [Presentation] An online policy gradient algorithm for continuous state and action Markov decision processes.

    • Author(s)
      Ma, Y., Zhao, T., Hatano, K., & Sugiyama, M.
    • Organizer
      European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD2014)
    • Place of Presentation
      Nancy, France
    • Year and Date
      2014-09-15 – 2014-09-19
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence.

    • Author(s)
      Noh, Y.-K., Sugiyama, M., Liu, S., du Plessis, M. C., Park, F. C., & Lee, D. D.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2014)
    • Place of Presentation
      Reykjavik, Iceland
    • Year and Date
      2014-04-22 – 2014-04-24
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Clustering via mode seeking by direct estimation of the gradient of a log-density.

    • Author(s)
      Sasaki, H., Hyvarinen, A., & Sugiyama, M.
    • Organizer
      European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD2014)
    • Place of Presentation
      Nancy, France
    • Year and Date
      2014-09-15 – 2014-09-19
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Transductive learning with multi-class volume approximation.

    • Author(s)
      Niu, G., Dai, B., du Plessis, M. C., & Sugiyama, M.
    • Organizer
      International Conference on Machine Learning (ICML2014)
    • Place of Presentation
      Beijing, China
    • Year and Date
      2014-06-21 – 2014-06-26
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Analysis of empirical MAP and empirical partially Bayes: Can they be alternatives to variational Bayes?

    • Author(s)
      Nakajima, S. & Sugiyama, M.
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS2014)
    • Place of Presentation
      Reykjavik, Iceland
    • Year and Date
      2014-04-22 – 2014-04-24
    • Data Source
      KAKENHI-PLANNED-23120004
  • [Presentation] Clustering via mode seeking by direct estimation of the gradient of a log-density.

    • Author(s)
      Sasaki, H., Hyvarinen, A., & Sugiyama, M.
    • Organizer
      European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD2014)
    • Place of Presentation
      Nancy, France
    • Year and Date
      2014-09-15 – 2014-09-19
    • Data Source
      KAKENHI-PROJECT-25700022
  • 1.  YAMASHITA Yukihiko (90220350)
    # of Collaborated Projects: 5 results
    # of Collaborated Products: 0 results
  • 2.  TANAKA Toshihisa (70360584)
    # of Collaborated Projects: 5 results
    # of Collaborated Products: 0 results
  • 3.  WASHIZAWA Yoshikazu (10419880)
    # of Collaborated Projects: 5 results
    # of Collaborated Products: 0 results
  • 4.  OGAWA Hidemitsu (50016630)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 2 results
  • 5.  KUMAZAWA Itsuo (70186469)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 6.  MORIMOTO Jun (10505986)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 4 results
  • 7.  HIRABAYASHI Akira (50272688)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 8.  Doya Kenji (80188846)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 9.  SAKAGAMI Masamichi (10225782)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 10.  OKAMOTO Hitoshi (40183769)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 11.  SHIBATA Tomohiro (40359873)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 12.  OKADA Mitsuhiro (30224025)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 13.  HIKIDA Takatoshi (70421378)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 14.  KIMURA Minoru (40118451)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 15.  IMAI Mutsumi (60255601)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 16.  TAKAHASHI Hidehiko (60415429)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 17.  YGER Florian
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 2 results

URL: 

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi