• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Yata Kazuyoshi  矢田 和善

ORCIDConnect your ORCID iD *help
… Alternative Names

YATA Kazuyoshi  矢田 和善

Less
Researcher Number 90585803
Other IDs
Affiliation (Current) 2025: 筑波大学, 数理物質系, 教授
Affiliation (based on the past Project Information) *help 2023 – 2024: 筑波大学, 数理物質系, 教授
2016 – 2022: 筑波大学, 数理物質系, 准教授
2011 – 2015: 筑波大学, 数理物質系, 助教
2010: 筑波大学, 大学院・数理物質科学研究科, 助教
Review Section/Research Field
Principal Investigator
Basic Section 12040:Applied mathematics and statistics-related / Foundations of mathematics/Applied mathematics / General mathematics (including Probability theory/Statistical mathematics)
Except Principal Investigator
Medium-sized Section 60:Information science, computer engineering, and related fields / Statistical science / Basic Section 60030:Statistical science-related / Statistical science / Sections That Are Subject to Joint Review: Basic Section60030:Statistical science-related , Basic Section61030:Intelligent informatics-related / Basic Section 61030:Intelligent informatics-related / Information science, computer engineering, and related fields
Keywords
Principal Investigator
高次元PCA / 判別分析 / 高次元漸近理論 / 高次元クラスタリング / 高次元判別分析 / 高次元統計解析 / パスウェイ解析 / クラスタリング / 高次元非線形PCA / 高次元幾何的表現 … More / 客観的総合指数 / 異常値検出 / 高次元天文データ / 高次元k-means / 高次漸近理論 / 高次元スパースPCA / 高次元共分散行列 / 高次元統計的推測 / データ変換法 / 高次元カーネルSVM / 高次元バイアス項 / 高次元スパース推測 / 高次元2次判別方式 / 高次元カーネルPCA / 高次元統計的検定 / 高次バイアス補正 / 高次元漸近分布 / 高次元潜在構造 / 高次元二標本検定法 / SSEモデル / 高次元SVM / 強スパイクモデル / 逐次解析 / 高次元小標本 / マイクロアレイデータ / クラスター分析 / PCA / 高次元小標本データ … More
Except Principal Investigator
高次元データ / 深層学習 / 高次元統計解析 / 切断指数型分布族 / 最尤推定量 / 漸近損失 / ビッグデータ / 異常値 / 高次元小標本 / クロスデータ行列法 / クラスター分析 / 判別分析 / 多変量解析 / 統計的推定・推論 / 深層モデル / 非スパースモデル / 高次元統計学 / 大規模モデル / 次元の呪い / 巨大データ / データ圧縮 / 時空間データ / 個別化医療 / クラスタリング / 次世代シーケンサー / 天体スペクトル / 個別化モデリング / 超高次元データ / 切断t分布 / 2次の漸近損失 / 2次の漸近分散 / 2次の漸近平均 / パレート分布 / 有効推定量 / 集中確率 / 指数型分布族 / 中央値不偏推定量 / ベイズ推定量 / 切断母数 / 局外母数 / 切断分布族 / ディープラーニング / 人工知能 / スパイクノイズ / 非スパースモデリング / マイクロアレイ / ゲノム / 統計数学 / データサイエンス / 検定 / 推定 / 漸近損失量 / 漸近分散 / 漸近平均 / 欠損性 / Bayes 推定量 / Bayes推定量 / 非正則推定論 / 欠損値 / 潜在構造分析 / 情報量規準 / 逆行列 / 回帰分析 / 非ガウス / 高次モーメント / 情報量 / 変数選択 / 高次元漸近理論 / HDLSS / 標本数 / 漸近正規性 / 多重検定 / パスウェイ解析 / グラフィカルモデル / 標本数決定 / 相関検定 / 幾何学的表現 / ネットワーク / パターン認識 / マイクロアレイデータ / ノイズ掃き出し法 / 主成分分析 / 高次元データ解析 Less
  • Research Projects

    (15 results)
  • Research Products

    (516 results)
  • Co-Researchers

    (31 People)
  •  Theoretical development of non-sparse high-dimensional statistics for statistical understanding and utilization of large-degree-of-freedom models

    • Principal Investigator
      今泉 允聡
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 60030:Statistical science-related
      Basic Section 61030:Intelligent informatics-related
      Sections That Are Subject to Joint Review: Basic Section60030:Statistical science-related , Basic Section61030:Intelligent informatics-related
    • Research Institution
      The University of Tokyo
  •  非線形特徴量に基づく新たな高次元統計理論の開発とその応用Principal Investigator

    • Principal Investigator
      矢田 和善
    • Project Period (FY)
      2022 – 2025
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12040:Applied mathematics and statistics-related
    • Research Institution
      University of Tsukuba
  •  Developments of statistical compression technology for massive data having tensor structures

    • Principal Investigator
      青嶋 誠
    • Project Period (FY)
      2022 – 2024
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 60:Information science, computer engineering, and related fields
    • Research Institution
      University of Tsukuba
  •  Innovative Developments of Theories and Methodologies for Large Complex Data

    • Principal Investigator
      青嶋 誠
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (A)
    • Review Section
      Medium-sized Section 60:Information science, computer engineering, and related fields
    • Research Institution
      University of Tsukuba
  •  Research on Bayes inference in non-regular models in a wide sense

    • Principal Investigator
      Akahira Masafumi
    • Project Period (FY)
      2019 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 60030:Statistical science-related
    • Research Institution
      University of Tsukuba
  •  Tackling individualized modeling with ultra-high dimensional data

    • Principal Investigator
      AOSHIMA Makoto
    • Project Period (FY)
      2019 – 2021
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 60:Information science, computer engineering, and related fields
    • Research Institution
      University of Tsukuba
  •  New developments for high-dimensional higher-order asymptotics and its applicationsPrincipal Investigator

    • Principal Investigator
      YATA KAZUYOSHI
    • Project Period (FY)
      2018 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12040:Applied mathematics and statistics-related
    • Research Institution
      University of Tsukuba
  •  New developments for big data by non-sparse modeling

    • Principal Investigator
      AOSHIMA Makoto
    • Project Period (FY)
      2017 – 2018
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Research Field
      Information science, computer engineering, and related fields
    • Research Institution
      University of Tsukuba
  •  The clarification of hierarchical structure of statistical deficiency

    • Principal Investigator
      AKAHIRA Masafumi
    • Project Period (FY)
      2015 – 2017
    • Research Category
      Grant-in-Aid for Challenging Exploratory Research
    • Research Field
      Statistical science
    • Research Institution
      University of Tsukuba
  •  Theories and Methodologies for Large Complex Data

    • Principal Investigator
      AOSHIMA Makoto
    • Project Period (FY)
      2015 – 2019
    • Research Category
      Grant-in-Aid for Scientific Research (A)
    • Research Field
      Statistical science
    • Research Institution
      University of Tsukuba
  •  Statistics for Big Data: Development of Theories and Tackling the 3Vs

    • Principal Investigator
      AOSHIMA Makoto
    • Project Period (FY)
      2014 – 2016
    • Research Category
      Grant-in-Aid for Challenging Exploratory Research
    • Research Field
      Statistical science
    • Research Institution
      University of Tsukuba
  •  Asymptotic Studies for High-Dimensional DataPrincipal Investigator

    • Principal Investigator
      YATA Kazuyoshi
    • Project Period (FY)
      2014 – 2017
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Foundations of mathematics/Applied mathematics
    • Research Institution
      University of Tsukuba
  •  New Developments of Multivariate Statistical Methodologies - High Speed, Robustness, and High Accuracy

    • Principal Investigator
      AOSHIMA Makoto
    • Project Period (FY)
      2011 – 2013
    • Research Category
      Grant-in-Aid for Challenging Exploratory Research
    • Research Field
      Statistical science
    • Research Institution
      University of Tsukuba
  •  Constructing theoretical system for high-dimension, low-sample-size dataPrincipal Investigator

    • Principal Investigator
      YATA KAZUYOSHI
    • Project Period (FY)
      2011 – 2013
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      General mathematics (including Probability theory/Statistical mathematics)
    • Research Institution
      University of Tsukuba
  •  Theories and Methodologies for High-Dimensional Data Analysis

    • Principal Investigator
      AOSHIMA Makoto
    • Project Period (FY)
      2010 – 2014
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Statistical science
    • Research Institution
      University of Tsukuba

All 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 Other

All Journal Article Presentation Book

  • [Book] 高次元の統計学2019

    • Author(s)
      青嶋 誠、矢田 和善
    • Total Pages
      120
    • Publisher
      共立出版
    • ISBN
      9784320112636
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Book] 高次元の統計学2019

    • Author(s)
      青嶋 誠,矢田和善
    • Total Pages
      120
    • Publisher
      共立出版
    • ISBN
      9784320112636
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Book] 高次元の統計学2019

    • Author(s)
      青嶋 誠、矢田 和善
    • Total Pages
      120
    • Publisher
      共立出版
    • ISBN
      4320112636
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Book] 高次元の統計学2019

    • Author(s)
      青嶋 誠、矢田 和善
    • Total Pages
      120
    • Publisher
      共立出版
    • ISBN
      9784320112636
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Book] Effective methodologies for statistical inference on microarray studies. In P.E. Spiess (Ed.), Prostate Cancer -From Bench to Bedside2011

    • Author(s)
      M. Aoshima, K. Yata
    • Publisher
      InTech
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Book] Effective methodologies for statistical inference on microarray studies, in: P.E. Spiess (Ed.), Prostate Cancer - From Bench to Bedside, InTech, 2011, pp. 13-32.2011

    • Author(s)
      Makoto Aoshima, Kazuyoshi Yata
    • Publisher
      InTech
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] Automatic Sparse PCA for High-Dimensional Data2025

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Statistica Sinica

      Volume: 35

    • DOI

      10.5705/ss.202022.0319

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K19769, KAKENHI-PROJECT-20H00576
  • [Journal Article] High-dimensional Statistical Analysis and Its Application to an ALMA Map of NGC 2532024

    • Author(s)
      Takeuchi Tsutomu T.、Yata Kazuyoshi、Egashira Kento、Aoshima Makoto、Ishii Aki、Cooray Suchetha、Nakanishi Kouichiro、Kohno Kotaro、Kono Kai T.
    • Journal Title

      The Astrophysical Journal Supplement Series

      Volume: 271 Issue: 2 Pages: 44-44

    • DOI

      10.3847/1538-4365/ad2517

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769, KAKENHI-PROJECT-22K03412, KAKENHI-PROJECT-18K18015, KAKENHI-PROJECT-20H00576
  • [Journal Article] Asymptotic properties of hierarchical clustering in high-dimensional settings2024

    • Author(s)
      Egashira Kento、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 199 Pages: 105251-105251

    • DOI

      10.1016/j.jmva.2023.105251

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K19769, KAKENHI-PROJECT-20K11701, KAKENHI-PROJECT-22K03412, KAKENHI-PROJECT-20H00576
  • [Journal Article] 高次元小標本における非階層型クラスタリングの一致性について2023

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2254 Pages: 1-8

    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Journal Article] Statistical hypothesis testing for high-dimension, low-sample-size data2023

    • Author(s)
      Aoshima Makoto、Ishii Aki、Yata Kazuyoshi
    • Journal Title

      American Mathematical Society, Sugaku Expositions

      Volume: ー

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Journal Article] 高次元小標本における非階層型クラスタリングの一致性について2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2254 Pages: 1-8

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Journal Article] Statistical hypothesis testing for high-dimension, low-sample-size data2023

    • Author(s)
      Aoshima Makoto, Ishii Aki, Yata Kazuyoshi
    • Journal Title

      American Mathematical Society, Sugaku Expositions

      Volume: ー

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Journal Article] 高次元小標本における非階層型クラスタリングの一致性について2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2254 Pages: 1-8

    • Open Access
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Journal Article] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2221 Pages: 30-37

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Journal Article] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 188 Pages: 104850-104850

    • DOI

      10.1016/j.jmva.2021.104850

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-18K18015, KAKENHI-PROJECT-20K11701, KAKENHI-PROJECT-22K19769, KAKENHI-PROJECT-20H00576, KAKENHI-PROJECT-18H05290
  • [Journal Article] Consistency of the objective general index in high-dimensional settings2022

    • Author(s)
      Takuma Bando, Tomonari Sei, Kazuyoshi Yata
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 189 Pages: 104938-104938

    • DOI

      10.1016/j.jmva.2021.104938

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K11865, KAKENHI-PROJECT-21K11781, KAKENHI-PROJECT-19K11850, KAKENHI-PROJECT-22K03412, KAKENHI-PROJECT-20H00576
  • [Journal Article] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗, 矢田和善, 青嶋誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2221 Pages: 30-37

    • Open Access
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Journal Article] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2221 Pages: 30-37

    • Open Access
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Journal Article] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗, 矢田和善, 青嶋誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2221 Pages: 30-37

    • Open Access
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Journal Article] 高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋誠・石井晶・矢田和善
    • Journal Title

      数学

      Volume: 73 Pages: 360-379

    • NAID

      40022736270

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Journal Article] 論説:高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋 誠、石井 晶、矢田和善
    • Journal Title

      数学

      Volume: 73 Pages: 360-379

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 185 Pages: 104779-104779

    • DOI

      10.1016/j.jmva.2021.104779

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-20H00576, KAKENHI-PROJECT-20K22305
  • [Journal Article] Hypothesis tests for high-dimensional covariance structures2021

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: in press Issue: 3 Pages: 599-622

    • DOI

      10.1007/s10463-020-00760-5

    • NAID

      120007168344

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-20H00576, KAKENHI-PROJECT-19K11850, KAKENHI-PROJECT-20K11701
  • [Journal Article] Asymptotic properties of distance-weighted discrimination and its bias correction for high-dimension, low-sample-size data2021

    • Author(s)
      Egashira Kento、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 4 Issue: 2 Pages: 821-840

    • DOI

      10.1007/s42081-021-00135-x

    • NAID

      210000176902

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-20H00576
  • [Journal Article] 論説:高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋 誠、石井 晶、矢田和善
    • Journal Title

      数学

      Volume: 73 Pages: 360-379

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Journal Article] 論説:高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋 誠、石井 晶、矢田和善
    • Journal Title

      数学

      Volume: 73 Pages: 360-379

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Journal Article] 高次元におけるDistance Weighted Discriminationについて2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2157 Pages: 1-10

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Journal Article] Tests for high-dimensional covariance structures under the non-strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 21-30

    • NAID

      120006956689

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] 高次元におけるDistance Weighted Discriminationについて2020

    • Author(s)
      江頭 健斗・矢田 和善・青嶋 誠
    • Journal Title

      京都大学 数理解析研究所講究録

      Volume: 2157 Pages: 1-10

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Journal Article] High-dimensional covariance matrix estimation under the SSE model2020

    • Author(s)
      Konishi Keisuke、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2157 Pages: 11-20

    • NAID

      120006956688

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Journal Article] High-dimensional Two-sample Test Procedures under the Strongly Spiked Eigenvalue Model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      Ouyou toukeigaku

      Volume: 49 Issue: 3 Pages: 109-125

    • DOI

      10.5023/jappstat.49.109

    • NAID

      130008022515

    • ISSN
      0285-0370, 1883-8081
    • Language
      Japanese
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-18K18015, KAKENHI-PROJECT-20H00576
  • [Journal Article] 高次元におけるDistance Weighted Discriminationについて2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 1-10

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] High-dimensional covariance matrix estimation under the SSE model2020

    • Author(s)
      小西啓介、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 11-20

    • NAID

      120006956688

    • Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] Tests for high-dimensional covariance structures under the non-strongly spiked eigenvalue model2020

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2157 Pages: 21-30

    • NAID

      120006956689

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Journal Article] Soft-margin SVMs in the HDLSS context2019

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2124 Pages: 44-55

    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] Geometric consistency of principal component scores for high‐dimensional mixture models and its application2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Scandinavian Journal of Statistics

      Volume: - Issue: 3 Pages: 899-921

    • DOI

      10.1111/sjos.12432

    • NAID

      120007163354

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-20K11701, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-20H00576
  • [Journal Article] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2019

    • Author(s)
      A. ishii, K. Yata, M. Aoshima
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 印刷中 Issue: 1 Pages: 105-128

    • DOI

      10.1007/s42081-018-0029-z

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K18015, KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-17K19956, KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-15H01678
  • [Journal Article] 強スパイク固有値モデルにおける高次元一標本検定とその応用について2019

    • Author(s)
      石井 晶・矢田 和善・青嶋 誠
    • Journal Title

      京都大学 数理解析研究所講究録

      Volume: 2124 Pages: 56-64

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Journal Article] 強スパイク固有値モデルにおける高次元一標本検定とその応用について2019

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2124 Pages: 56-64

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Journal Article] Soft-margin SVMs in the HDLSS context2019

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2124 Pages: 44-55

    • Open Access
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Journal Article] Equality tests of high-dimensional covariance matrices under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 202 Pages: 99-111

    • DOI

      10.1016/j.jspi.2019.02.002

    • NAID

      120007133560

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-17K19956, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-18K18015
  • [Journal Article] 強スパイク固有値モデルにおける高次元一標本検定とその応用について2019

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2124 Pages: 56-64

    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings2019

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: - Issue: 5 Pages: 1-30

    • DOI

      10.1007/s10463-019-00727-1

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-19J10175, KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-20K11701, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-20H00576
  • [Journal Article] A quadratic classifier for high-dimension, low-sample-size data under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Springer Proceedings in Mathematics and Statistics

      Volume: 294 Pages: 131-142

    • DOI

      10.1007/978-3-030-28665-1_10

    • ISBN
      9783030286644, 9783030286651
    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-18K18015, KAKENHI-PROJECT-15H01678
  • [Journal Article] A Survey of High Dimension Low Sample Size Asymptotics2018

    • Author(s)
      M. Aoshima, D. Shen, H. Shen, K. Yata, Y. Zhou, J.S. Marron
    • Journal Title

      Special Issue in Honour of Peter Gavin Hall, Australian & New Zealand Journal of Statistics

      Volume: 60 Issue: 1 Pages: 4-19

    • DOI

      10.1111/anzs.12212

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K00043, KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-26800078, KAKENHI-PROJECT-18H05290
  • [Journal Article] An equality test of high-dimensional covariance matrices under the SSE model2018

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2091 Pages: 22-30

    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] A general framework of SVM in HDLSS settings2018

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2091 Pages: 14-21

    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] High-dimensional quadratic classifiers in non-sparse settings.2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Methodology and Computing in Applied Probability

      Volume: to appear Issue: 3 Pages: 663-682

    • DOI

      10.1007/s11009-018-9646-z

    • NAID

      120007132793

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-17K19956, KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-15H01678
  • [Journal Article] A test for high-dimensional covariance matrices via the extended cross-data-matrix methodology2018

    • Author(s)
      遠藤紘平, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2091 Pages: 1-13

    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Journal Article] Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: to appear Issue: 3 Pages: 473-503

    • DOI

      10.1007/s10463-018-0655-z

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-17K19956, KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-19K22837, KAKENHI-PROJECT-15H01678
  • [Journal Article] Two-sample tests for high-dimension, strongly spiked eigenvalue models2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Statistica Sinica

      Volume: 28 Pages: 43-62

    • DOI

      10.5705/ss.202016.0063

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-17K19956, KAKENHI-PROJECT-26800078, KAKENHI-PROJECT-17K00043, KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-15H01678
  • [Journal Article] A test of sphericity for high-dimensional data and its application for detection of divergently spiked noise2018

    • Author(s)
      Yata Kazuyoshi, Aoshima Makoto, Nakayama Yugo
    • Journal Title

      Sequential Analysis

      Volume: 37 Issue: 3 Pages: 397-411

    • DOI

      10.1080/07474946.2018.1548850

    • NAID

      120007133441

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03409, KAKENHI-PROJECT-18H05290, KAKENHI-PROJECT-15H01678
  • [Journal Article] Statistical inference for high-dimension, low-sample-size data2017

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      American Mathematical Society, Sugaku Expositions

      Volume: 30 Issue: 2 Pages: 137-158

    • DOI

      10.1090/suga/421

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-26800078
  • [Journal Article] Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models2017

    • Author(s)
      Aoshima Makoto、Yata Kazuyoshi
    • Journal Title

      arXiv preprint

      Volume: arXiv:1710.10768 Pages: 1-29

    • Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Support vector machine and its bias correction in high-dimension, low-sample-size settings2017

    • Author(s)
      Nakayama, Y., Yata, K., Aoshima, M.
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 191 Pages: 88-100

    • DOI

      10.1016/j.jspi.2017.05.005

    • NAID

      120007134554

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-26800078
  • [Journal Article] 高次元固有ベクトルの一致性2017

    • Author(s)
      矢田 和善・青嶋 誠
    • Journal Title

      京都大学 数理解析研究所講究録

      Volume: 2047 Pages: 19-28

    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Journal Article] Asymptotic properties of support vector machines in HDLSS settings2017

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      数理解析研究所講究録

      Volume: 2047 Pages: 10-18

    • Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] 高次元固有ベクトルの一致性2017

    • Author(s)
      矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2047 Pages: 19-28

    • Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Estimation of a signal matrix for high-dimensional non-Gaussian data2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1999 Pages: 36-46

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Journal Article] 高次元小標本におけるサポートベクターマシンの一致性について2016

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1999 Pages: 17-27

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Journal Article] 高次元小標本におけるサポートベクターマシンの一致性について2016

    • Author(s)
      中山 優吾,矢田 和善,青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 1999 Pages: 17-27

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] High-dimensional inference on covariance structures via the extended cross-data-matrix methodology2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 151 Pages: 151-166

    • DOI

      10.1016/j.jmva.2016.07.011

    • NAID

      120007129372

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-26540010, KAKENHI-PROJECT-26800078
  • [Journal Article] 拡張クロスデータ行列法と共分散行列関数の不偏推定2016

    • Author(s)
      矢田 和善・青嶋 誠
    • Journal Title

      京都大学 数理解析研究所講究録

      Volume: 1954 Pages: 51-60

    • Open Access
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Journal Article] Reconstruction of a high-dimensional low-rank matrix2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Journal Title

      Electronic Journal of Statistics

      Volume: 10 Issue: 1 Pages: 895-917

    • DOI

      10.1214/16-ejs1128

    • NAID

      120007135234

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26540010, KAKENHI-PROJECT-26800078
  • [Journal Article] Asymptotic properties of the first principal component and equality tests of covariance matrices in high-dimension, low-sample-size context2016

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 170 Pages: 186-199

    • DOI

      10.1016/j.jspi.2015.10.007

    • NAID

      120007129950

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078, KAKENHI-PROJECT-15H01678
  • [Journal Article] Estimation of a signal matrix for high-dimensional non-Gaussian data2016

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      数理解析研究所講究録

      Volume: 1999 Pages: 36-46

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] High-dimensional quadratic classifiers in non-sparse settings2015

    • Author(s)
      Makoto Aoshima, Kazuyoshi Yata
    • Journal Title

      arXiv

      Volume: arXiv:1503.04549 Pages: 1-42

    • NAID

      120007132793

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Statistical inference for high-dimension, low-sample-size data2015

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      American Mathematical Society

      Volume: 印刷中

    • Peer Reviewed / Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Journal Article] 拡張クロスデータ行列法と共分散行列関数の不偏推定2015

    • Author(s)
      矢田和善,青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 1954 Pages: 51-60

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Geometric classifier for multiclass, high-dimensional data2015

    • Author(s)
      Makoto Aoshima, Kazuyoshi Yata
    • Journal Title

      Sequential Analysis

      Volume: 34 Issue: 3 Pages: 279-294

    • DOI

      10.1080/07474946.2015.1063256

    • NAID

      120005663456

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078, KAKENHI-PROJECT-15H01678
  • [Journal Article] 拡張クロスデータ行列法と共分散行列関数の不偏推定2015

    • Author(s)
      矢田和善,青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1954 Pages: 51-60

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Journal Article] Reconstruction of a signal matrix for high-dimension, low-sample-size data2015

    • Author(s)
      Wataru Murayama, Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      数理解析研究所講究録

      Volume: 1954 Pages: 23-31

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Reconstruction of a signal matrix for high-dimension, low-sample-size data2015

    • Author(s)
      Murayama, W., Yata, K., Aoshima, M.
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1954 Pages: 23-31

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Journal Article] High-dimensional inference on covariance structures via the extended cross-data-matrix methodology2015

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      arXiv

      Volume: arXiv:1503.06492 Pages: 1-23

    • NAID

      120007129372

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Asymptotic properties of the first principal component and equality tests of covariance matrices in high-dimension, low-sample-size context2015

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      arXiv

      Volume: arXiv:1503.07302 Pages: 1-22

    • NAID

      120007129950

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Principal component analysis based clustering for high-dimension, low-sample-size data2015

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      arXiv

      Volume: arXiv:1503.04525 Pages: 1-19

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Asymptotic distribution of the largest eigenvalue via geometric representations of high-dimension, low-sample-size data2014

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Journal Title

      Sri Lankan Journal of Applied Statistics

      Volume: 5 Issue: 4 Pages: 81-94

    • DOI

      10.4038/sljastats.v5i4.7785

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Journal Article] Largest eigenvalue estimation for high-dimension, low-sample-size data and its application2014

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      数理解析研究所講究録

      Volume: 1910 Pages: 115-124

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] 高次元小標本における混合データの幾何学的表現とクラスター分析への応用2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1910 Pages: 125-133

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Journal Article] Largest Eigenvalue Estimation for High-Dimension, Low-Sample-Size Data and its Application2014

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1910 Pages: 115-124

    • Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Journal Article] 高次元小標本における混合データの幾何学的表現とクラスター分析への応用2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 1910 Pages: 125-133

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Journal Article] Asymptotic distribution of the largest eigenvalue via geometric representations of high-dimension, low-sample-size data2014

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Journal Title

      Sri Lankan J. Appl. Statist.

      Volume: 印刷中

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data2014

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: 66 Issue: 5 Pages: 983-1010

    • DOI

      10.1007/s10463-013-0435-8

    • NAID

      40020186813

    • Peer Reviewed / Acknowledgement Compliant / Open Access
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23650142, KAKENHI-PROJECT-23740066, KAKENHI-PROJECT-26330033
  • [Journal Article] 高次元小標本における統計的推測 (論説)2013

    • Author(s)
      青嶋 誠,矢田和善
    • Journal Title

      数学

      Volume: 65

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] 日本統計学会研究業績賞受賞者特別寄稿論文:高次元データの統計的方法論2013

    • Author(s)
      青嶋 誠、矢田和善
    • Journal Title

      日本統計学会誌

      Volume: 43 Pages: 123-150

    • NAID

      110009649320

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Journal Article] Correlation tests for high-dimensional data using extended cross-data-matrix methodology2013

    • Author(s)
      Yata, K.
    • Journal Title

      J. Multivariate Anal.

      Volume: 117 Pages: 313-331

    • DOI

      10.1016/j.jmva.2013.03.007

    • NAID

      120007137031

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23500343, KAKENHI-PROJECT-23740066
  • [Journal Article] On the distribution of the largest eigenvalue in high dimension, low sample size context2013

    • Author(s)
      矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 1860 Pages: 120-128

    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] Asymptotic distribution of the largest eigenvalue via geometric representations of high-dimension, low-sample-size data2013

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Journal Title

      Sri Lankan Journal of Applied Statistics, Special Issue: Modern Statistical Methodologies in the Cutting Edge of Science

      Volume: 印刷中

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Journal Article] Asymptotic normality for inference on multisample, high-dimensional mean vectors under mild conditions2013

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Methodology and Computing in Applied Probability

      Volume: 印刷中 Issue: 2 Pages: 419-439

    • DOI

      10.1007/s11009-013-9370-7

    • NAID

      120007130238

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23740066, KAKENHI-PROJECT-15H01678, KAKENHI-PROJECT-26330033
  • [Journal Article] 高次元データの統計的方法論2013

    • Author(s)
      青嶋誠,矢田和善
    • Journal Title

      日本統計学会誌

      Volume: 43 Pages: 123-150

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] On the distribution of the largest eigenvalue in high dimension, low samplesize context2013

    • Author(s)
      矢田和善、青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1860 Pages: 120-128

    • Data Source
      KAKENHI-PROJECT-23650142
  • [Journal Article] PCA consistency for the power spiked model in high-dimensional settings2013

    • Author(s)
      Yata, K., Aoshima, M.
    • Journal Title

      J. Multivariate Anal.

      Volume: 122 Pages: 334-354

    • DOI

      10.1016/j.jmva.2013.08.003

    • NAID

      120007136793

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23500343, KAKENHI-PROJECT-23740066
  • [Journal Article] 高次元小標本における統計的推測2013

    • Author(s)
      青嶋誠,矢田和善
    • Journal Title

      数学

      Volume: 65 Pages: 225-247

    • NAID

      10031195365

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] Cluster analysis for high-dimensional data2012

    • Author(s)
      Kurishita, K., Yata, K., Aoshima, M.
    • Journal Title

      Proceedings of Statistical Inference for High-Dimensional Data and Its Applications

      Pages: 11-20

    • Data Source
      KAKENHI-PROJECT-23650142
  • [Journal Article] Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric reprensentations2012

    • Author(s)
      Yata, K., Aoshima, M.
    • Journal Title

      J.Multivariate Anal.

      Volume: 105 Issue: 1 Pages: 193-215

    • DOI

      10.1016/j.jmva.2011.09.002

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21650063, KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23500343, KAKENHI-PROJECT-23740066, KAKENHI-PROJECT-24650146
  • [Journal Article] Asymptotic properties of a distance-based classifier for high-dimensional data2012

    • Author(s)
      矢田和善,青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 1804 Pages: 53-64

    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] Note on classification for high-dimensional data2012

    • Author(s)
      永橋幸大, 矢田和善, 青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1804 Pages: 40-52

    • Data Source
      KAKENHI-PROJECT-23650142
  • [Journal Article] Asymptotic properties of a distance-based classifier for high-dimensional data2012

    • Author(s)
      矢田和善
    • Journal Title

      数理解析研究所講究録

      Volume: (印刷中)

    • Data Source
      KAKENHI-PROJECT-22300094
  • [Journal Article] Note on classification for high-dimensional data2012

    • Author(s)
      永橋幸大,矢田和善,青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 1804 Pages: 40-52

    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] Inference on high-dimensional mean vectors with fewer observations than the dimension2012

    • Author(s)
      Yata, K.
    • Journal Title

      Methodol. Comput. Appl. Probab.

      Volume: 14 Issue: 3 Pages: 459-476

    • DOI

      10.1007/s11009-011-9233-z

    • NAID

      120007137200

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23740066
  • [Journal Article] Asymptotic properties of a distance-based classifier for high-dimensional data2012

    • Author(s)
      矢田和善, 青嶋 誠
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1804 Pages: 53-64

    • Data Source
      KAKENHI-PROJECT-23650142
  • [Journal Article] Authors' response : Two-stage procedures for high-dimensional data2011

    • Author(s)
      Aoshima, M.
    • Journal Title

      Sequential Analysis

      Volume: 30 Issue: 4 Pages: 432-440

    • DOI

      10.1080/07474946.2011.619102

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23740066
  • [Journal Article] Note on robust model selection by density power divergence in a contaminated regression model2011

    • Author(s)
      矢田和善, 青嶋 誠, 小林裕子
    • Journal Title

      数理解析研究所講究録

      Volume: 1758 Pages: 150-159

    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] 高次元小標本における平均ベクトルの推測とその周辺2011

    • Author(s)
      矢田和善
    • Journal Title

      数理解析研究所講究録

      Volume: 1758 Pages: 136-149

    • Data Source
      KAKENHI-PROJECT-23740066
  • [Journal Article] Two-stage procedures for high-dimensional data (Editor's special invited paper)2011

    • Author(s)
      Aoshima, M.
    • Journal Title

      Sequential Analysis

      Volume: 30 Issue: 4 Pages: 356-399

    • DOI

      10.1080/07474946.2011.619088

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094, KAKENHI-PROJECT-23340022, KAKENHI-PROJECT-23740066
  • [Journal Article] Note on robust model selection by density power divergence in a contaminated regression model2011

    • Author(s)
      Yata, K.
    • Journal Title

      数理解析研究所講究録

      Volume: 1758 Pages: 150-159

    • Data Source
      KAKENHI-PROJECT-23650142
  • [Journal Article] Intrinsic dimensionality estimation of high dimension, low sample size data with d-asymptotics2010

    • Author(s)
      Yata, K.
    • Journal Title

      Commun.Statist.-Theory Meth.

      Volume: 39 Pages: 1511-1521

    • NAID

      120007137805

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Journal Article] Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix2010

    • Author(s)
      Yata, K
    • Journal Title

      J.Mult.Anal.

      Volume: 101 Pages: 2060-2077

    • NAID

      120007137968

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Reconstruction of a low-rank matrix by singular value decompositions2024

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      日本数学会年会
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 高次元相関行列の統計的推測について2024

    • Author(s)
      巖名佑務, 矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「確率モデルと統計的推測」
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Asymptotic properties of kernel k-means under high dimensional settings2024

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Asymptotic properties of kernel k-means under high dimensional settings2024

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元小標本におけるカーネルk-means法について2024

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会度年会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Reconstruction of a low-rank matrix by singular value decompositions2024

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会度年会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元小標本におけるカーネルk-means法について2024

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本数学会年会
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Inference on high-dimensional mean vectors by the data transformation technique2024

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Asymptotic properties of kernel k-means under high dimensional settings2024

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Inference on high-dimensional mean vectors by the data transformation technique2024

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Contrastive principal component analysis in high dimension low sample size2023

    • Author(s)
      Shao-Hsuan Wang, Kazuyoshi Yata
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Threshold-based Sparse PCA for high-dimensional data based on the noise-reduction methodology2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Statistical Week 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Estimation of the strongly spiked eigenstructure in high-dimensional settings2023

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Asymptotic behaviors of k-means under high dimensional settings2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元データにおけるk-means法の漸近的性質とその応用2023

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Hierarchical clustering and its asymptotic behaviors in multiclass HDLSS settings2023

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学と関連分野における諸問題に関する理論と方法論の革新的展開」
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元データにおけるk-means法の漸近的性質とその応用2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 高次元データにおけるk-means法の漸近的性質とその応用2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      2023年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] Quadratic classifiers for high-dimensional noisy data2023

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Asymptotic properties of kernel k-means for high dimensional data2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Asymptotic properties of kernel k-means for high dimensional data2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Strongly spiked eigenvalueモデルにおける高次元相関行列の検定について2023

    • Author(s)
      巖名佑務, 矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Estimation of the strongly spiked eigenstructure in high-dimensional settings2023

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] k-means 法の高次元漸近的性質について2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      応用統計学会年会
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 高次元小標本におけるk-means法と階層的クラスタリングについて2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Automatic sparse PCA and its applications2023

    • Author(s)
      矢田和善
    • Organizer
      Seminar on Bayesian Computation
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の統計的推測2023

    • Author(s)
      矢田和善、石井 晶、青島 誠
    • Organizer
      2023年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] Quadratic classifiers for high-dimensional noisy data2023

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元小標本における非階層型クラスタリングの一致性について2023

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      京都大学数理解析研究所研究集会「種々の統計的モデルにおける推測方式の有効性」
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の統計的推測2023

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Contrastive principal component analysis in high dimension low sample size2023

    • Author(s)
      Shao-Hsuan Wang, Kazuyoshi Yata
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Automatic sparse PCA and its applications2023

    • Author(s)
      矢田和善
    • Organizer
      Seminar on Bayesian Computation
    • Invited
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Threshold-based Sparse PCA for high-dimensional data based on the noise-reduction methodology2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Statistical Week 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Asymptotic behaviors of k-means under high dimensional settings2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 高次元小標本における非階層型クラスタリングの一致性について2023

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      京都大学数理解析研究所研究集会「種々の統計的モデルにおける推測方式の有効性」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Threshold-based PCA in high-dimensional settings2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      TMU International Conference on Statistical Modelling and Inference 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の統計的推測2023

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      統計関連学会連合大会 応用統計学会企画セッション「高次元統計解析の最近の発展」
    • Invited
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Contrastive principal component analysis in high dimension low sample size2023

    • Author(s)
      Shao-Hsuan Wang, Kazuyoshi Yata
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Asymptotic properties of kernel k-means for high dimensional data2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] k-means 法の高次元漸近的性質について2023

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      応用統計学会年会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Quadratic classifiers for high-dimensional noisy data2023

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元小標本におけるk-means法と階層的クラスタリングについて2023

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Automatic sparse PCA for high-dimensional data and its applications2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Seminar on Institute of Statistical Science, Academia Sinica
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Threshold-based PCA in high-dimensional settings2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      TMU International Conference on Statistical Modelling and Inference 2023
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Asymptotic behaviors of k-means under high dimensional settings2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Automatic sparse PCA for high-dimensional data and its applications2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Seminar on Institute of Statistical Science, Academia Sinica
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Hierarchical clustering and its asymptotic behaviors in multiclass HDLSS settings2023

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学と関連分野における諸問題に関する理論と方法論の革新的展開」
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Test for outlier detection by high-dimensional PCA2022

    • Author(s)
      Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 強スパイク固有値モデルにおける高次元統計的推測2022

    • Author(s)
      矢田和善
    • Organizer
      応用統計学会年会特別講演
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      JMVA 50th Jubilee volume follow-up webinar
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Estimation of eigenvectors for linear combinations of high-dimensional covariance matrices and its applications2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 階層的クラスタリングの高次元漸近的振舞い2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元主成分分析における頑健性について2022

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元におけるカーネル主成分分析の漸近的性質とその応用2022

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルの理論と方法論:最前線の動向」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Multiple outlier detection test with PCA in high-dimension, low-sample-size settings2022

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Hierarchical clustering and its asymptotic behaviors in high-dimensional settings2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学の開拓」
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Multiple outlier detection test with PCA in high-dimension, low-sample-size settings2022

    • Author(s)
      中山優吾、矢田和善、青嶋誠
    • Organizer
      2022年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] 強スパイク固有値モデルにおける高次元統計的推測2022

    • Author(s)
      矢田和善
    • Organizer
      応用統計学会年会(特別講演)
    • Invited
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「ベイズ法と統計的推測」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      JMVA 50th Jubilee volume follow-up webinar
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 階層的クラスタリングの高次元漸近的振舞い2022

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] Multiple outlier detection test with PCA in high-dimension, low-sample-size settings2022

    • Author(s)
      中山優吾, 矢田和善, 青嶋誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Asymptotic behaviors of hierarchical clustering under high dimensional settings2022

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元主成分分析における頑健性について2022

    • Author(s)
      中山優吾、矢田和善、青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Aki Ishii、Kazuyoshi Yata、Makoto Aoshima
    • Organizer
      JMVA 50th Jubilee volume follow-up virtual meeting
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 階層的クラスタリングの高次元漸近的振舞い2022

    • Author(s)
      江頭健斗、矢田和善、青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] Test for outlier detection by high-dimensional PCA2022

    • Author(s)
      Yugo Nakayama、Kazuyoshi Yata、Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] High dimensional and low sample size case statistics for the screening on crystal information of the solid-state electrolytes2022

    • Author(s)
      Sakamoto, H., Yata, K., Yamasaki, H., Aoshima, M.
    • Organizer
      2022 Materials Research Society Spring Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] High dimensional and low sample size case statistics for the screening on crystal information of the solid-state electrolytes2022

    • Author(s)
      Hirotaka Sakamoto, Kazuyoshi Yata, Hisatsugu Yamaski, Makoto Aoshima
    • Organizer
      2022 Materials Research Society Spring Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「ベイズ法と統計的推測」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元主成分分析における頑健性について2022

    • Author(s)
      中山優吾, 矢田和善, 青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Estimation of eigenvectors for linear combinations of high-dimensional covariance matrices and its applications2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Hierarchical clustering and its asymptotic behaviors in high-dimensional settings2022

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      科研費シンポジウム「統計科学の開拓」
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 高次元における客観的総合指標の一致性2022

    • Author(s)
      坂東拓馬、清 智也、矢田和善
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic behaviors of hierarchical clustering under high dimensional settings2022

    • Author(s)
      Kento Egashira、Kazuyoshi Yata、Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Hierarchical clustering and its asymptotic behaviors in high-dimensional settings2022

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      科研費シンポジウム「統計科学の開拓」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元統計解析: 高次元PCAとその応用2022

    • Author(s)
      矢田和善
    • Organizer
      第9回 筑波大学 RCMS サロン
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元小標本における非階層型クラスタリングの一致性について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「種々の統計的モデルにおける推測方式の有効性」
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Estimation of eigenvectors for linear combinations of high-dimensional covariance matrices and its application2022

    • Author(s)
      Kazuyoshi Yata、Aki Ishii、Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] Asymptotic behaviors of hierarchical clustering under high dimensional settings2022

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K19769
  • [Presentation] 階層的クラスタリングの高次元漸近的振舞い2022

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元主成分スコアに基づく異常値の検出法2022

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High dimensional and low sample size case statistics for the screening on crystal information of the solid-state electrolytes2022

    • Author(s)
      Hirotaka Sakamoto、Kazuyoshi Yata、Hisatsugu Yamaski、Makoto Aoshima
    • Organizer
      2022 MRS Spring Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03412
  • [Presentation] 高次元における重み付き判別分析とデータ変換法について2021

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-dimensional statistical analysis of the ALMA spectroscopic map of a nearby galaxy NGC 2532021

    • Author(s)
      Takeuchi Tsutomu、Kono Kai、Yata Kazuyoshi、Aoshima Makoto、Ishii Aki、Nakanishi Koichiro、Egashira Kento、Cooray Suchetha、Kohono Kotatro
    • Organizer
      Galaxy Evolution Workshop 2020
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-Dimensional Statistical Analysis of the ALMA Spectroscopic Map of a Nearby Galaxy NGC 2532021

    • Author(s)
      Takeuchi T、Kono K、Yata K、Aoshima M、Ishii A、Nakanishi K、Egashira K、Cooray S、Kohno K
    • Organizer
      Galaxy Evolution Workshop 2020
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元統計学の方法による銀河の分光マップの解析2021

    • Author(s)
      竹内 努、矢田和善、青嶋 誠、石井 晶、江頭健斗、河野 海、中西康一郎、Suchetha Cooray、河野孝太郎
    • Organizer
      科研費シンポジウム「多様な分野における統計科学に関する理論と方法論の革新的展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 距離加重判別分析の高次元漸近的性質2021

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本数学会2021年度年会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Analysis of Integral Field Spectroscopic Data as a High-Dimensional Low-Sample Size Data Problem2021

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田和善、青嶋 誠、石井 晶
    • Organizer
      日本天文学会2021年春季年会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application2021

    • Author(s)
      Yata K., Aoshima M.
    • Organizer
      The 63rd ISI World Statistics Congress
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Asymptotic properties of high-dimensional kernel PCA and its applications2021

    • Author(s)
      Nakayama Y., Yata K., Aoshima M.
    • Organizer
      International Symposium on New Developments of Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 単一強スパイク固有値モデルにおける高次元平均ベクトルの2標本検定2021

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-dimensional quadratic classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      IISA 2021 Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic properties of high-dimensional kernel PCA and its applications2021

    • Author(s)
      Nakayama Y., Yata K., Aoshima M.
    • Organizer
      International Symposium on New Developments of Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善・石井晶・青嶋誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application2021

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 63rd ISI World Statistics Congress
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] High-dimensional quadratic classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii A., Yata K., Aoshima M.
    • Organizer
      IISA 2021 Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 強スパイク固有値モデルにおける高次元2次判別2021

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      応用統計学会年会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic properties of high-dimensional kernel PCA and its applications2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on New Developments of Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元相互共分散行列の特異値分解とその応用2021

    • Author(s)
      佐々木拓真、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計科学の革新にむけて」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] High-dimensional classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 4rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests for covariance structures in high-dimensional data2021

    • Author(s)
      Yata K., Ishii A., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Tests for covariance structures in high-dimensional data2021

    • Author(s)
      Yata Kazuyoshi、Ishii Aki、Aoshima Makoto
    • Organizer
      The 4rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Analysis of integral field spectroscopic data as a high-dimensional low-sample size data problem2021

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田 和善、青嶋 誠、石井 晶、江頭健斗
    • Organizer
      日本天文学会2021年春季年会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-dimensional classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii A., Yata K., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] High-Dimensional Statistical Analysis of ALMA Spectroscopic Mapping Data2021

    • Author(s)
      Takeuchi T、Kono K、Nakanishi K、Yata K、Aoshima M、Egashira K、Ishii A
    • Organizer
      自然科学研究機構:自然科学研究における機関間連携ネットワークによる拠点形成事業シンポジウム「自然科学における階層と全体」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元統計学の方法による銀河の分光マップの解析2021

    • Author(s)
      竹内 努、矢田和善、青嶋 誠、石井 晶、江頭健斗、河野 海、中西康一郎、Suchetha COORAY、河野孝太郎
    • Organizer
      科研費シンポジウム「多様な分野における統計科学に関する理論と方法論の革新的展開」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用2021

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会2021年度年会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用2021

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会年会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] High-dimensional classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii A., Yata K., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元相互共分散行列の特異値分解とその応用2021

    • Author(s)
      佐々木拓真、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学の革新にむけて」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests for covariance structures in high-dimensional data2021

    • Author(s)
      Yata K., Ishii A., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] High-dimensional quadratic classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii A., Yata K., Aoshima M.
    • Organizer
      IISA 2021 Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Clustering by kernel PCA with Gaussian Kernel and tuning for high-dimensional data2021

    • Author(s)
      Nakayama Y., Yata K., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application2021

    • Author(s)
      Yata K., Aoshima M.
    • Organizer
      The 63rd ISI World Statistics Congress
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元におけるDWDとWDWDのバイアス補正とその比較2021

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計科学の革新にむけて」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元におけるDWDとWDWDのバイアス補正とその比較2021

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学の革新にむけて」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Clustering by kernel PCA with Gaussian kernel and tuning for high-dimensional data2021

    • Author(s)
      Nakayama Y., Yata K., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 距離加重判別分析の高次元漸近的性質2021

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本数学会2021年度年会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Clustering by kernel PCA with Gaussian kernel and tuning for high-dimensional data2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 4rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic properties of distance weighted discrimination and its bias correction in HDLSS settings2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Clustering by kernel principal component analysis for high-dimensional data2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元データにおける距離加重判別分析の漸近的性質とバイアス補正2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] High-dimensional covariance matrix estimation under the strongly spiked eigenvalue model2020

    • Author(s)
      小西啓介, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] ノイズ掃き出し法に基づく共分散行列の推定2020

    • Author(s)
      小西啓介, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「統計的モデルの新展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic properties of distance weighted discrimination and its bias correction in HDLSS settings2020

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-dimensional statistics for integral field spectroscopic data2020

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田和善、青嶋 誠、石井 晶、江頭健斗
    • Organizer
      初代星初代銀河研究会2020
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元データに対する共分散構造の検定2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「統計的モデルの新展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元データにおける異常値の検出について2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「機械学習・統計学・最適化の数理とAI技術への展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元スパースPCAの一致性とその応用2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] High-Dimensional Statistics for Integral Field Spectroscopic Data2020

    • Author(s)
      Takeuchi T、Kono K、Nakanishi K、Yata K、Aoshima M、Egashira K、Ishii A
    • Organizer
      日本学術振興会科学研究費による研究集会「初代星・初代銀河研究会2020」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元スパースPCAの一致性とその応用2020

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] 高次元小標本における異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元カーネル主成分分析に基づく異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] データ変換を用いた高次元判別分析について2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Analysis of Spatially Resolved Galaxy Spectra as a High-Dimensional Low-Sample Size Data Problem2020

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田和善,青嶋 誠、石井 晶、江頭健斗
    • Organizer
      日本学術振興会科学研究費による研究集会「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 客観的総合指数とその高次元漸近理論による一致性について2020

    • Author(s)
      坂東拓馬、清 智也、矢田和善
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-dimensional covariance matrix estimation under the strongly spiked eigenvalue model2020

    • Author(s)
      小西啓介、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元カーネル主成分分析に基づく異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Clustering by kernel principal component analysis for high-dimensional data2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元スパースPCAの一致性とその応用2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] データ変換を用いた高次元次判別分析について2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Analysis of spatially resolved galaxy spectra as a high-dimensional low-sample size data problem2020

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田和善、青嶋 誠、石井 晶、江頭健斗
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元スパースPCAの一致性とその応用2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元小標本における異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] ノイズ掃き出し法による高次元スパースPCAについて2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元データにおけるDistance Weighted Discriminationについて2020

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「統計的モデルの新展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元データにおける距離加重判別分析の漸近的性質とバイアス補正2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Clustering by kernel principal component analysis for high-dimensional data2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元相互共分散行列の特異値推定について2020

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Sparse PCA by the noise-reduction methodology2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] 高次元データにおける異常値の検出について2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「機械学習・統計学・最適化の数理とAI技術への展開」
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] Sparse PCA by the noise-reduction methodology2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20H00576
  • [Presentation] A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] A Test of Sphericity for High-Dimensional Data and Its Application for Detection of Divergently Spiked Noise2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto、Nakayama Yugo
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリングとチューニング2019

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      2019年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Tests for high-dimensional covariance structures based on the eigenstructures2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] データ変換を用いた高次元2次判別方式について2019

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリングとチューニング2019

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of High-Dimensional Mean Vectors and Its Application Under the SSE Model2019

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      Waseda International Symposium ``Introduction of General Causality to Various Data & its Applications"
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Geometrical quadratic discriminant analysis for high-dimension, strongly spiked eigenvalue models2019

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      科研費シンポジウム「高次元複雑データの統計モデリング」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Tests for high-dimensiomal covariance structures under the SSE model2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic properties of kernel PCA with Gaussian kernel for high-dimensional data2019

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計学と機械学習の数理と展開」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Tests of high-dimensional correlation matrices on the basis of eigenstructures2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 単一強スパイク固有値モデルにおける高次元二標本検定2019

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of High-Dimensional Correlation Matrices on the Basis of Eigenstructures2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Tests for high-dimensiomal covariance structures under the SSE model2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 単一強スパイク固有値モデルにおける高次元二標本検定2019

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models2019

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] A test of sphericity for high-dimensional data and its application for detection of divergently spiked noise2019

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元混合データにおける幾何学的一致性について2019

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K11850
  • [Presentation] A high-dimensional quadratic classifier under the strongly spiked eigenvalue model2019

    • Author(s)
      Yata Kazuyoshi、Ishii Aki、Aoshima Makoto
    • Organizer
      The 14th Workshop on Stochastic Models, Statistics and their Application
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Tests for high-dimensiomal covariance structures under the SSE model2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on Theories and Methodologies for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] A Test of Sphericity for High-Dimensional Data and Its Application for Detection of Divergently Spiked Noise2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto、Nakayama Yugo
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] データ変換を用いた高次元2次判別方式について2019

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      2019年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] 強スパイクモデルにおける固有空間の推測と高次元平均ベクトルの検定2019

    • Author(s)
      石井 晶, 矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「最尤法とベイズ法」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の推定2019

    • Author(s)
      小西啓介、矢田和善、青嶋 誠
    • Organizer
      2019年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Asymptotic properties of kernel PCA with Gaussian kernel for high-dimensional data2019

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「統計学と機械学習の数理と展開」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 拡張クロスデータ行列法による高次元共分散構造の検定について2019

    • Author(s)
      矢田和善,青嶋 誠,石井 晶
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Geometrical quadratic discriminant analysis for high-dimension, strongly spiked eigenvalue models2019

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「高次元複雑データの統計モデリング」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Tests for high-dimensional covariance structures based on eigenstructures2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      2019年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] A high-dimensional quadratic classifier under the strongly spiked eigenvalue model2019

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 14th Workshop on Stochastic Models, Statistics and their Application
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 単一強スパイク固有値モデルに対する高次元平均ベクトルの2標本検定2019

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「統計的推測および確率解析に関する総合的研究」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of high-dimensional mean vectors and its application under the SSE model2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium“Introduction of General Causality to Various Data & its Applications”
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元の統計学:高次元PCAとその応用2019

    • Author(s)
      矢田和善
    • Organizer
      応用統計ワークショップ
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の推定2019

    • Author(s)
      小西啓介, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 単一強スパイク固有値モデルに対する高次元平均ベクトルの2標本検定2019

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計的推測および確率解析に関する総合的研究」
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure2019

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] A high-dimensional quadratic classifier under the strongly spiked eigenvalue model2019

    • Author(s)
      Yata Kazuyoshi、Ishii Aki、Aoshima Makoto
    • Organizer
      The 14th Workshop on Stochastic Models, Statistics and their Application
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] 高次元混合データにおける幾何学的一致性について2019

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-19K22837
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリングについて2019

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「最尤法とベイズ法」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元混合データにおける幾何学的一致性について2019

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests for high-dimensional covariance matrices and correlation matrices under the strongly spiked eigenvalue model2018

    • Author(s)
      石井 晶, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「融合する統計科学」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] High-dimensional statistical analysis by non-sparse modeling2018

    • Author(s)
      Aoshima Makoto、Yata Kazuyoshi
    • Organizer
      Waseda International Symposium“Recent Developments in Time series Analysis: Quantile Regression, High Dimensional Data & Causality”
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] A high-dimensional quadratic classifier after feature selection2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 計量生物学における高次元統計解析の可能性2018

    • Author(s)
      青嶋 誠、矢田和善、仲木 竜
    • Organizer
      2018年度統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元固有値推定におけるバイアス補正について2018

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会2018年度年会
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] A high-dimensional quadratic classifier after feature selection2018

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元カーネル主成分分析の漸近的性質とその応用2018

    • Author(s)
      中山 優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of high-dimensional mean vectors under the SSE model2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Equality tests for high-dimensional covariance matrices2018

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 27th South Taiwan Statistics Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] ノイズ掃き出し法を用いた高次元共分散行列の同等性検定2018

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      日本数学会2018年度年会
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] 高次元平均ベクトルの一致推定について2018

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリング2018

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「予測モデリングとその周辺 -機械学習・統計科学・情報理論からのアプローチ-」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Consistency properties of regularized noise reduction methodology in high-dimensional settings2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 4th International Society of NonParametric Statistics Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Consistency properties of regularized noise reduction methodology in high-dimensional settings2018

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The Fourth Conference of the International Society for Nonparametric Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Regularized PCA for high-dimensional data based on the noise reduction methodology2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Fifth Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima, Aki Ishii
    • Organizer
      The 9th International Workshop on Applied Probability
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2018

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The Ninth International Workshop on Applied Probability
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] Equality tests for high-dimensional covariance matrices2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 27th South Taiwan Statistics Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元共分散構造に関する検定の一般化について2018

    • Author(s)
      矢田和善,青嶋 誠,石井 晶
    • Organizer
      科研費シンポジウム「多変量データ解析法における理論と応用」
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Asymptotic properties of SVM with Gaussian kernel for high-dimensional data2018

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「生命・自然科学における複雑現象解明のための統計的アプローチ」
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 変数選択を用いた高次元2次判別方式について2018

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] Tests of high-dimensional mean vectors under the SSE model2018

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] Equality tests of high-dimensional covariance matrices on the basis of strongly spiked eigenvalues2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium“Introduction of General Causality to Various Data & its Innovation of the Optimal Inference”
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] A quadratic classifier for high-dimensional data under the strongly spiked eigenvalue model2018

    • Author(s)
      石井 晶, 矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元固有値推定におけるバイアス補正とその応用2018

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「Statistical Inference and Modelling」
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] High-Dimensional Statistical Analysis by Non-Sparse Modeling2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Organizer
      Waseda International Symposium “Recent Developments in Time Series Analysis: Quantile Regression, High Dimensional Data & Causality”
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] ノイズ掃き出し法を用いた高次元共分散行列の同等性検定2018

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Equality tests of high-dimensional covariance matrices on the basis of strongly spiked eigenvalues2018

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      Waseda International Symposium ``Introduction of General Causality to Various Data & Its Innovation of The Optimal Inference"
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] Asymptotic properties of SVM with Gaussian kernel for high-dimensional data2018

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「生命・自然科学における複雑現象解明のための統計的アプローチ」
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Equality tests of high-dimensional covariance matrices with strongly spiked eigenstructures2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 2nd International Conference on Econometrics and Statistics
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元固有値推定におけるバイアス補正について2018

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      日本数学会年度会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Strongly spiked eigenvalueモデルにおける高次元相関ベクトルの検定について2018

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 計量生物学における高次元統計解析の可能性2018

    • Author(s)
      青嶋 誠, 矢田和善, 仲木 竜
    • Organizer
      統計関連学会連合大会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K03409
  • [Presentation] 高次元データにおける非線形SVM について2018

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「Statistical Inference and Modelling」
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 拡張クロスデータ行列法による高次元共分散行列の検定問題について2018

    • Author(s)
      遠藤紘平, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「Statistical Inference and Modelling」
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Regularized PCA for high-dimensional data besed on the noise-reduction methodology2018

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 5th Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] PCA based clustering for ultrahigh-dimensional data2017

    • Author(s)
      Aoshima Makoto、Yata Kazuyoshi
    • Organizer
      The 1st International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元データにおけるバイアス補正非線形SVM について2017

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      2017年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元空間における特徴ベクトルの一致推定について2017

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Regularized noise-reduction methodology in high-dimensional settings2017

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      Waseda International Symposium “Recent Developments for Statistical Asymptotic Theory for Time Series & Circular Distributions”
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Asymptotic normality for inference on high-dimensional mean vectors under the SSE model2017

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元データにおける固有空間の構造に基づいた共分散行列の同等性検定2017

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 拡張クロスデータ行列法による高次元共分散行列の検定問題について2017

    • Author(s)
      遠藤紘平、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Statistical Inference and Modelling」
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] High-dimensional statistical analysis based on the inference of eigenstructures2017

    • Author(s)
      Makoto Aoshima, Kazuyoshi Yata
    • Organizer
      Waseda International Symposium “High Dimensional Statistical Analysis for Time Spatial Processes & Quantile Analysis for Time Series”
    • Place of Presentation
      早稲田大学 (東京都新宿区)
    • Year and Date
      2017-02-28
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] スパース性に基づくノイズ掃き出し法について2017

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計学, 機械学習の数理とその応用」
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元小標本におけるSVM について2017

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会「Bayes Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2017-03-06
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Equality tests of covariance matrices based on eigenstructures in the highdimensional context2017

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「大規模複雑データの理論と方法論,及び,関連分野への応用」
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] 高次元固有ベクトルの一致性について2017

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会2017年度年会
    • Place of Presentation
      首都大学東京(東京都八王子市)
    • Year and Date
      2017-03-25
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元固有ベクトルの推定とその応用2017

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Bayes Inference and Its Related Topics」
    • Place of Presentation
      京都大学 (京都府京都市)
    • Year and Date
      2017-03-06
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Asymptotic properties of support vector machines in high-dimension, low-sample-size settings2017

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元固有ベクトルの推定とその応用2017

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会「Bayes Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2017-03-06
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] High-dimensional correlation tests with sample size determination2017

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      Sixth International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Regularized noise-reduction methodology in high-dimensional settings2017

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      Waseda International Symposium“Recent Developments for Statistical Asymptotic Theory for Time Series & Circular Distributions”
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元小標本におけるバイアス補正SVM2017

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「統計的モデリングと計算アルゴリズムの数理と展開」
    • Place of Presentation
      名古屋大学 (愛知県名古屋市)
    • Year and Date
      2017-02-18
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元空間における特徴ベクトルの一致推定について2017

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      2017年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Presentation] 高次元小標本におけるバイアス補正SVM2017

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計的モデリングと計算アルゴリズムの数理と展開」
    • Place of Presentation
      名古屋大学(愛知県名古屋市)
    • Year and Date
      2017-02-18
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元データにおけるバイアス補正非線形SVMについて2017

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] スパース性に基づくノイズ掃き出し法について2017

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計学, 機械学習の数理とその応用」
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元空間における特徴ベクトルの一致推定ついて2017

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      2017年度統計関連学会連合大会
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元データにおける非線形SVM について2017

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Statistical Inference and Modelling」
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元データにおける固有空間の構造に基づいた共分散行列の同等性検定2017

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] 高次元固有ベクトルの一致性について2017

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会年度会
    • Place of Presentation
      首都大学東京 (東京都八王子市)
    • Year and Date
      2017-03-25
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元固有値・固有ベクトルの一致推定量について2017

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「統計的モデリングと計算アルゴリズムの数理と展開」
    • Place of Presentation
      名古屋大学 (愛知県名古屋市)
    • Year and Date
      2017-02-18
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Asymptotic properties of support vector machines in high-dimension, low-sample-size settings2017

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元固有値推定におけるバイアス補正とその応用2017

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Statistical Inference and Modelling」
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Asymptotic normality for inference on high-dimensional mean vectors under the SSE model2017

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-17K19956
  • [Presentation] High-Dimensional Correlation Tests with Sample Size Determination2017

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      The Sixth International Workshop in Sequential Methodologies
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元小標本におけるSVM について2017

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Bayes Inference and Its Related Topics」
    • Place of Presentation
      京都大学 (京都府京都市)
    • Year and Date
      2017-03-06
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] PCA based clustering for ultrahigh-dimensional data2017

    • Author(s)
      Aoshima, M., Yata, K.
    • Organizer
      The 1st International Conference on Econometrics and Statistics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Estimation of low-rank matrices in high-dimensional settings2017

    • Author(s)
      Yata Kazuyoshi
    • Organizer
      A Symposium on Complex Data Analysis 2017
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Equality tests of covariance matrices based on eigenstructures in the high-dimensional context2017

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論,及び,関連分野への応用」
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Regularized noise-reduction methodology for high- dimensional data2017

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      10th Conference of the IASC-ARS/68th Annual NZSA Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元固有値・固有ベクトルの一致推定量について2017

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「統計的モデリングと計算アルゴリズムの数理と展開」
    • Place of Presentation
      名古屋大学(愛知県名古屋市)
    • Year and Date
      2017-02-18
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Statistical inference in strongly spiked eigenvalue models2016

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Statistical Analysis for Large Complex Data
    • Place of Presentation
      筑波大学 (茨城県つくば市)
    • Year and Date
      2016-11-23
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Reconstruction of a high-dimensional low-rank matrix2016

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      金沢大学 (石川県金沢市)
    • Year and Date
      2016-09-07
    • Invited
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Estimation of a signal matrix for high-dimensional data2016

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会年度会
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2016-03-19
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Effective Classifiers for High-Dimensional Non-Sparse Data2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      International Conference on Information Complexity and Statistical Modeling in High Dimensions with Applications
    • Place of Presentation
      Cappadocia (Turkey)
    • Year and Date
      2016-05-20
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] Reconstruction of a high-dimensional low-rank matrix and its applications2016

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium “High Dimensional Statistical Analysis for Time Spatial Processes, Quantile and Empirical Likelihood Analysis for Time Series”
    • Place of Presentation
      早稲田大学 (東京都新宿区)
    • Year and Date
      2016-10-25
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Estimation of a signal matrix for high-dimensional data2016

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会2016年度年会
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2016-03-19
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] Inference on high-dimensional covariance structures via the extended cross-data-matrix methodology2016

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Eighth International Workshop on Applied Probability
    • Place of Presentation
      Toronto (Canada)
    • Year and Date
      2016-06-23
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Statistical inference in strongly spiked eigenvalue models2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      International Symposium “Statistical Analysis for Large Complex Data”
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2016-11-23
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元小標本におけるサポートベクターマシンの漸近的性質とバイアス補正2016

    • Author(s)
      中山 優吾・矢田 和善・青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      金沢大学(石川県金沢市)
    • Year and Date
      2016-09-05
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Presentation] 高次元小標本におけるサポートベクターマシンの漸近的性質とバイアス補正2016

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      2016年度統計関連学会連合大会
    • Place of Presentation
      金沢大学(石川県金沢市)
    • Year and Date
      2016-09-05
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Reconstruction of a high-dimensional low-rank matrix2016

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      2016年度統計関連学会連合大会
    • Place of Presentation
      金沢大学(石川県金沢市)
    • Year and Date
      2016-09-07
    • Invited
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] Inference on high-dimensional covariance structures with fewer observations than the dimension2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      Waseda International Symposium “High Dimensional Statistical Analysis for Time Spatial Processes and Quantile Analysis forTime Series”
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2016-03-01
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Reconstruction of a high-dimensional low-rank matrix and its applications2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      Waseda International Symposium “High Dimensional Statistical Analysis for Time Spatial Processes, Quantile and Empirical Likelihood Analysis for Time Series
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2016-10-25
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] Inference on high-dimensional covariance structures with fewer observations than the dimension2016

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium“High Dimensional Statistical Analysis for Time Spatial Processes & Quantile Analysis for Time Series”
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2016-03-01
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Reconstruction of a signal matrix for high-dimensional data and its applications2016

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Statistical Inference on Divergence Measures and Its Related Topics」
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2016-03-07
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Inference on High-Dimensional Covariance Structures via the Extended Cross-Data-Matrix Methodology2016

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      The Eighth International Workshop on Applied Probability
    • Place of Presentation
      Toronto (Canada)
    • Year and Date
      2016-06-23
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Effective classifiers for high-dimensional non-sparse data2016

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Conference on Information Complexity and Statistical Modeling in High Dimensions with Applications
    • Place of Presentation
      Cappadocia (Turkey)
    • Year and Date
      2016-05-20
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Strongly spiked eigenvalue モデルにおける高次元判別分析について2016

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学 (大阪府吹田市)
    • Year and Date
      2016-09-18
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元小標本における変数選択について2016

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Statistical Inference on Divergence Measures and Its Related Topics」
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2016-03-07
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Strongly spiked eigenvalueモデルにおける高次元判別分析について2016

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学千里山キャンパス(大阪府吹田市)
    • Year and Date
      2016-09-18
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Presentation] Strongly spiked eigenvalue モデルにおける高次元判別分析について2016

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会2016年度秋季総合分科会
    • Place of Presentation
      関西大学(大阪府吹田市)
    • Year and Date
      2016-09-18
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元小標本におけるサポートベクターマシンの漸近的性質とバイアス補正2016

    • Author(s)
      中山 優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      金沢大学 (石川県金沢市)
    • Year and Date
      2016-09-05
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Reconstruction of a high-dimensional low-rank matrix2016

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      金沢大学(石川県金沢市)
    • Year and Date
      2016-09-07
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Presentation] Reconstruction of a signal matrix for high-dimensional data and its applications2016

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会「Statistical Inference on Divergence Measures and Its Related Topics」
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2016-03-07
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元小標本における変数選択について2016

    • Author(s)
      中山優吾,矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会「Statistical Inference on Divergence Measures and Its Related Topics」
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2016-03-07
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] スパイクノイズと高次元統計解析2016

    • Author(s)
      青嶋 誠, 矢田和善
    • Organizer
      日本学術振興会科学研究費による研究集会「数理統計ひこね2016」
    • Place of Presentation
      滋賀大学(滋賀県彦根市)
    • Year and Date
      2016-12-02
    • Invited
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元小標本における第1主成分の漸近的性質と平均ベクトルの検定2015

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      2015 年度統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県岡山市)
    • Year and Date
      2015-09-08
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] Extended cross-data-matrix methodology for high-dimensional data and its applications2015

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「New Advances in Statistical Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2015-03-10
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Two-sample tests of high-dimensional means under the strongly spiked eigenvalue model2015

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      Waseda International Symposium “High Dimensional Statistical Analysis for Time Spatial Processes and Quantile Analysis for Time Series”
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2015-11-10
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] 高次元データにおける拡張クロスデータ行列法の漸近的性質とその応用について2015

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Place of Presentation
      明治大学(東京都)
    • Year and Date
      2015-03-24
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Principal component analysis based clustering for high-dimension, low-sample-size data2015

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本統計学会春季集会
    • Place of Presentation
      明治大学(東京都)
    • Year and Date
      2015-03-08
    • Invited
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元二標本問題における最適性について2015

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会2015年度秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市)
    • Year and Date
      2015-09-15
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Two-sample tests of high-dimensional means under the strongly spiked eigenvalue model2015

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium“High Dimensional Statistical Analysis for Spatio-Temporal Processes & Quantile Analysis for Time Series”
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2015-11-10
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] High-dimensional inference on covariance structures via the extended cross-data-matrix methodology2015

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      2015年度統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県岡山市)
    • Year and Date
      2015-09-07
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] High-dimensional two-sample tests in general settings2015

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「大規模複雑データの理論と方法論:最前線の動向」
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2015-11-16
    • Data Source
      KAKENHI-PROJECT-15H01678
  • [Presentation] Principal component analysis based clustering for high-dimension, low-sample-size data2015

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      第9回日本統計学会春季集会
    • Place of Presentation
      明治大学(東京都)
    • Year and Date
      2015-03-08
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] 高次元二標本問題における最適性について2015

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市)
    • Year and Date
      2015-09-15
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Presentation] High-dimensional two-sample tests in general settings2015

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向」
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2015-11-16
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] PCA consistency for high-dimensional multiclass mixture models and its applications2015

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      ISNPS Meeting“Biosciences, Medicine, and novel Non-Parametric Methods”
    • Place of Presentation
      Graz (Austria)
    • Year and Date
      2015-07-13
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元データにおける分類問題について2015

    • Author(s)
      矢田和善
    • Organizer
      早稲田大学理工学研究所プロジェクト研究「金融数理および年金数理研究」セミナー
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2015-05-27
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] High-dimensional inference on covariance structures via the extended cross-data-matrix methodology2015

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県岡山市)
    • Year and Date
      2015-09-07
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Reconstruction of a low-rank matrix for the power spiked model in high-dimensional settings2015

    • Author(s)
      村山 航, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「New Advances in Statistical Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2015-03-09
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] PCA Consistency for High-Dimensional Multiclass Mixture Models and its Applications2015

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      ISNPS Meeting “Biosciences, Medicine, and novel Non-Parametric Methods”
    • Place of Presentation
      Graz (Austria)
    • Year and Date
      2015-07-13
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] PCA based clustering for high-dimension, low-sample-size data2015

    • Author(s)
      Yata, K.
    • Organizer
      Workshop on Statistical Methods for Large Complex Data
    • Place of Presentation
      Kaohsiung (中華民国)
    • Year and Date
      2015-03-13
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] PCA based clustering for high-dimension, low-sample-size data2015

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      Workshop on Statistical Methods for Large Complex Data
    • Place of Presentation
      Kaohsiung (Taiwan)
    • Year and Date
      2015-03-13
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] High-dimensional inference on covariance structures via2015

    • Author(s)
      矢田 和善・青嶋 誠
    • Organizer
      2015年度統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県岡山市)
    • Year and Date
      2015-09-07
    • Data Source
      KAKENHI-PROJECT-15K11992
  • [Presentation] Extended cross-data-matrix methodology for high-dimensional data and its applications2015

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会「New Advances in Statistical Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2015-03-10
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] Reconstruction of a low-rank matrix for the power spiked model in high-dimensional settings2015

    • Author(s)
      村山 航, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会「New Advances in Statistical Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2015-03-09
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元二標本問題における最適性について2015

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市)
    • Year and Date
      2015-09-15
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元データにおける拡張クロスデータ行列法の漸近的性質とその応用について2015

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会2015年度年会
    • Place of Presentation
      明治大学(東京都)
    • Year and Date
      2015-03-24
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元小標本における第1主成分の漸近的性質と平均ベクトルの検定2015

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県岡山市)
    • Year and Date
      2015-09-08
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Quadratic-Type Classifications for High-Dimensional Data2014

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      The 3rd IMS Asia Pacific Rim Meeting
    • Place of Presentation
      Taipei (中華民国)
    • Year and Date
      2014-07-02
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Cluster analysis for multiclass, high-dimension, low-sample-size data2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Asymptotic Statistics and Its Related Topics」
    • Place of Presentation
      京都大学数理解析研究所(京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元データに対する特徴選択を用いた2次判別法について2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      2014年度統計関連学会連合大会
    • Place of Presentation
      東京大学(東京都)
    • Year and Date
      2014-09-14
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元データに対する特徴選択を用いた2次判別法について2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      東京大学(東京都)
    • Year and Date
      2014-09-14
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元小標本における最大固有値の分布とその応用2014

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Asymptotic Statistics and Its Related Topics」
    • Place of Presentation
      京都大学数理解析研究所(京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元混合分布におけるPCA とその応用2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      広島大学(広島県)
    • Year and Date
      2014-09-28
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元混合分布におけるPCAとその応用2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会2014年度秋季総合分科会
    • Place of Presentation
      広島大学(広島県)
    • Year and Date
      2014-09-28
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元データの2次判別分析について2014

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会年会
    • Place of Presentation
      学習院大学(東京都)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective Classifiers for High-Dimensional Data2014

    • Author(s)
      Yata, K
    • Organizer
      Workshop on Statistics for High-Dimensional and Dependent Data
    • Place of Presentation
      National Taiwan University (中華民国)
    • Year and Date
      2014-03-21
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Quadratic-type classification for high-dimensional data2014

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Third Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Place of Presentation
      Taipei (Taiwan)
    • Year and Date
      2014-07-02
    • Invited
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] 高次元小標本における共分散行列の同等性検定2014

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会2014年度秋季総合分科会
    • Place of Presentation
      広島大学(広島県)
    • Year and Date
      2014-09-28
    • Data Source
      KAKENHI-PROJECT-26540010
  • [Presentation] 高次元小標本における共分散行列の同等性検定2014

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      広島大学(広島県)
    • Year and Date
      2014-09-28
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Effective classifiers for high-dimensional data2014

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      Workshop on Statistics for High-Dimensional and Dependent Data
    • Place of Presentation
      Taipei (Taiwan)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Quadratic-type classifications for non-Gaussian, high-dimensional data2014

    • Author(s)
      Makoto Aoshima, Kazuyoshi Yata
    • Organizer
      Second International Society of NonParametric Statistics
    • Place of Presentation
      Cadiz (Spain)
    • Year and Date
      2014-06-13
    • Invited
    • Data Source
      KAKENHI-PROJECT-26800078
  • [Presentation] Eigenvalue estimation of large dimensional covariance matrices and its applications2013

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「ランダム作用素のスペクトルと関連する話題」
    • Place of Presentation
      京都大学(京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Asymptotic normality for inference on multi-sample, high-dimensional mean vectors under mild conditions2013

    • Author(s)
      K. Yata
    • Organizer
      Fourth International Workshop in Sequential Methodologies
    • Place of Presentation
      Georgia (U.S.A.)
    • Year and Date
      2013-07-18
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for high-dimensional data and its applications2013

    • Author(s)
      Makoto Aoshima, Kazuyoshi Yata
    • Organizer
      The 59th ISI World Statistics Congress
    • Place of Presentation
      Hong kong (China)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] On the distribution of the largest eigenvalue via geometric representation in high-dimension, low sample size context2013

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「高次元データ解析の理論と方法論,及び,関連分野への応用」
    • Place of Presentation
      筑波大学(茨城県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 主成分スコアに基づく高次元データのクラスタリングについて2013

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      大阪大学(大阪府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Misclassification rate adjusted classifiers for high-dimensional data2013

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「高次元データ解析の理論と方法論,及び,関連分野への応用」
    • Place of Presentation
      筑波大学(茨城県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本の幾何学的表現と最大固有値の漸近分布2013

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      愛媛大学(愛媛県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] PCA consistency for high-dimensional data under the power spiked model2013

    • Author(s)
      K. Yata, M. Aoshima
    • Organizer
      KSS/JSS/CSA International Session in KSS Semi-Annual Meeting
    • Place of Presentation
      Seoul (Korea)
    • Year and Date
      2013-11-02
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Asymptotic normality for inference on high-dimensional mean vectors under mild conditions2013

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      愛媛大学(愛媛県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元データにおける統計的推測について2013

    • Author(s)
      矢田和善
    • Organizer
      早稲田大学理工学研究所プロジェクト研究「金融数理および年金数理研究」セミナー
    • Place of Presentation
      早稲田大学(東京都)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for large p, small n scenario under generalized models2012

    • Author(s)
      K. Yata
    • Organizer
      Sixth International Workshop on Applied Probability
    • Place of Presentation
      Jerusalem (Israel)
    • Year and Date
      2012-06-14
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本における拡張クロスデータ行列法について2012

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会年度会
    • Place of Presentation
      東京理科大学(東京都)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本データの統計学 (日本統計学会各賞受賞者講演)2012

    • Author(s)
      青嶋誠,矢田和善
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      北海道大学
    • Year and Date
      2012-09-10
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Distance-based Classiers for High-dimensional Data2012

    • Author(s)
      矢田和善
    • Organizer
      京都大学数理解析研究所研究会「A New Perspective to Statistical Models and Its Related Topics」
    • Place of Presentation
      京都大学
    • Year and Date
      2012-03-06
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] 高次元小標本における拡張クロスデータ行列法について2012

    • Author(s)
      矢田和善
    • Organizer
      日本数学会2012年度年会
    • Place of Presentation
      東京理科大学
    • Year and Date
      2012-03-28
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Distance-based classifiers for High-dimensional data2012

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「A New Perspective to Statistical Models and Related Topics」
    • Place of Presentation
      京都大学数理解析研究所(京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本における回帰と分類2012

    • Author(s)
      永橋幸大,矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「A New Perspective to Statistical Models and Related Topics」
    • Place of Presentation
      京都大学数理解析研究所(京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Cluster Analysis for High-Dimensional Data2012

    • Author(s)
      栗下和義,矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「高次元データの推測理論の開発と応用」
    • Place of Presentation
      中央大学(東京都)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Extended Cross-Data-Matrix Methodology for High-Dimension, Low-Sample-Size Data2011

    • Author(s)
      矢田和善
    • Organizer
      データ科学特別セミナー
    • Place of Presentation
      大阪大学(大阪府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本における漸近理論について2011

    • Author(s)
      矢田和善
    • Organizer
      京都大学数理解析研究所研究会「Statistical Information in Inference and Its Related Topics」
    • Place of Presentation
      京都大学
    • Year and Date
      2011-03-08
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Robust model selection by density power divergence in a contaminated regression model2011

    • Author(s)
      小林裕子,矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      信州大学(長野県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本における統計的推測2011

    • Author(s)
      矢田和善
    • Organizer
      日本数学会秋季総合分科会特別講演(招待講演)
    • Place of Presentation
      信州大学(長野県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for large p, small n context with sample size determination2011

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      Third International Workshop in Sequential Methodologies 2011(招待講演)
    • Place of Presentation
      Stanford University(アメリカ合衆国)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for large p, small n context with sample size determination2011

    • Author(s)
      K. Yata
    • Organizer
      Third International Workshop in Sequential Methodologies
    • Place of Presentation
      Stanford (U.S.A.)
    • Year and Date
      2011-06-15
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Multiple Correlation Test for High-Dimension, Low-Sample-Size Data2011

    • Author(s)
      矢田和善
    • Organizer
      2011年度統計関連学会連合大会
    • Place of Presentation
      九州大学
    • Year and Date
      2011-09-06
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] 高次元小標本における統計的推測 (特別講演)2011

    • Author(s)
      矢田和善
    • Organizer
      日本数学会秋季総合分科会特別講演
    • Place of Presentation
      信州大学
    • Year and Date
      2011-09-30
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Multiple Correlation Test for High-Dimension, Low-Sample-Size Data2011

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      九州大学(福岡県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Statistical Inference for High-Dimension, Low-Sample-Size Data2011

    • Author(s)
      矢田和善
    • Organizer
      統計数学セミナー
    • Place of Presentation
      東京大学(東京都)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for Large p, Small n Context with Sample Size Determination2011

    • Author(s)
      Yata, K.
    • Organizer
      Third Intemational Workshop in Sequential Methodologies 2011
    • Place of Presentation
      Stanford University, CA, U.S.A.(招待講演)
    • Year and Date
      2011-06-15
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Robust classification with sample size determination in high-dimensional, heteroscedastic settings2010

    • Author(s)
      矢田和善
    • Organizer
      2010年度統計関連学会連合大会
    • Place of Presentation
      早稲田大学
    • Year and Date
      2010-09-07
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Sample size determination for high-dimension, low-sample-size data2010

    • Author(s)
      矢田和善
    • Organizer
      日本学術振興会科学研究費に'よる研究集会「統計的推測方法の理論的展開とその応用」
    • Place of Presentation
      熊本大学
    • Year and Date
      2010-11-19
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] 高次元小標本における平均ベクトルの推定と検定について2010

    • Author(s)
      矢田和善
    • Organizer
      日本数学会2010年度秋季総合分科会
    • Place of Presentation
      名古屋大学
    • Year and Date
      2010-09-25
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Two-stage inference methods for large p, small n scenarios : Part I2010

    • Author(s)
      Yata, K.
    • Organizer
      The Fifth International Workshop in Applied Probability
    • Place of Presentation
      Madrid, Spain(招待講演)
    • Year and Date
      2010-07-05
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Misclassification Rate Adjusted Classifiers for High-Dimensional Data

    • Author(s)
      矢田 和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「高次元データ解析の理論と方法論,及び,関連分野への応用」
    • Place of Presentation
      筑波大学 (茨城県)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Effective PCA for Large p, Small n Scenario Under Generalized Models

    • Author(s)
      Yata, K.
    • Organizer
      The Sixth International Workshop on Applied Probability
    • Place of Presentation
      Inbal Hotel Jerusalem(イスラエル)
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Eigenvalue Estimation of Large Dimensional Covariance Matrices and Its Applications

    • Author(s)
      矢田 和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「ランダム作用素のスペクトルと関連する話題」
    • Place of Presentation
      京都大学 (京都府)
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Effective PCA for large p, small n scenario under generalized models

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      Sixth International Workshop on Applied Probability
    • Place of Presentation
      Jerusalem (イスラエル国)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 主成分スコアに基づく高次元データのクラスタリングについて

    • Author(s)
      矢田 和善、青嶋 誠
    • Organizer
      2013年度統計関連学会連合大会
    • Place of Presentation
      大阪大学 (大阪府)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Effective Classifiers for High-Dimensional Data

    • Author(s)
      Yata, K.
    • Organizer
      Workshop on Statistics for High-Dimensional and Dependent Data
    • Place of Presentation
      National Taiwan University (中華民国)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Effective PCA for High-Dimensional Data and Its Applications

    • Author(s)
      Aoshima, M., Yata, K.
    • Organizer
      59th ISI World Statistics Congress
    • Place of Presentation
      Hong Kong Convention and Exhibition Centre (中華人民共和国香港特別行政区)
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Cluster analysis for high-dimensional non-Gaussian data

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「Asymptotic Expansions for Various Models and Their Related Topics」
    • Place of Presentation
      京都大学数理解析研究所 (京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本における幾何学的構造とその応用

    • Author(s)
      矢田和善
    • Organizer
      科研費シンポジウム「統計科学における深化と横断的展開」
    • Place of Presentation
      松江勤労者総合福祉センター(島根県)
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Effective PCA for High-Dimension, Low-Sample-Size Data with Geometric Representations

    • Author(s)
      Yata, K.
    • Organizer
      The 2nd IMS Asia Pacific Rim Meetings
    • Place of Presentation
      つくば国際会議場(茨城県)
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Asymptotic Normality for Inference on Multi-Sample, High-Dimensional Mean Vectors under Mild Conditions

    • Author(s)
      Yata, K.
    • Organizer
      Fourth International Workshop in Sequential Methodologies
    • Place of Presentation
      University of Georgia (アメリカ合衆国)
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] Asymptotic normality for inference on high-dimensional mean vectors under mild conditions

    • Author(s)
      矢田 和善、青嶋 誠
    • Organizer
      日本数学会2013年度秋季総合分科会
    • Place of Presentation
      愛媛大学 (愛媛県)
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] PCA Consistency for High-Dimensional Data under Generalized Models

    • Author(s)
      矢田和善
    • Organizer
      日本数学会2012 年度秋季総合分科会
    • Place of Presentation
      九州大学(福岡県)
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] 高次元小標本データの統計学

    • Author(s)
      青嶋 誠,矢田和善
    • Organizer
      統計関連学会連合大会 (日本統計学会各賞受賞者講演)
    • Place of Presentation
      北海道大学 (北海道)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Quadratic-Type Classifications for Non-Gaussian, High-Dimensional Data

    • Author(s)
      Aoshima, M., Yata, K.
    • Organizer
      2nd International Society of NonParametric Statistics
    • Place of Presentation
      Hotel Valentín Sancti Petri Spa&Convention Centre (スペイン王国)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Cluster analysis for multiclass, high-dimension, low-sample-size data

    • Author(s)
      矢田 和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「Asymptotic Statistics and Its Related Topics」
    • Place of Presentation
      京都大学 (京都府)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] PCA Consistency for the Power Spiked Model in High-Dimensional Settings

    • Author(s)
      矢田和善
    • Organizer
      第7回日本統計学会春季集会
    • Place of Presentation
      学習院大学(東京都)
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] On the Distribution of the Largest Eigenvalue via Geometric Representation in High-Dimension, Low Sample Size Context

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「高次元データ解析の理論と方法論,及び,関連分野への応用」
    • Place of Presentation
      筑波大学 (茨城県)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] 高次元小標本における最大固有値の分布とその応用

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「Asymptotic Statistics and Its Related Topics」
    • Place of Presentation
      京都大学 (京都府)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] PCA consistency for power spiked model in high-dimensional settings

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本統計学会春季集会
    • Place of Presentation
      学習院大学 (東京都)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元データの2次判別分析について

    • Author(s)
      矢田 和善、青嶋 誠
    • Organizer
      日本数学会2014年度年会
    • Place of Presentation
      学習院大学 (東京都)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Power spiked モデルをもつ高次元データの固有値推定について

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会年度会
    • Place of Presentation
      京都大学 (京都府)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本における幾何学的表現とその応用

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学における深化と横断的展開」
    • Place of Presentation
      松江テルサ (島根県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Cluster Analysis for High-Dimensional, Non-Gaussian Data

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      RIMS共同研究による研究会「Asymptotic Expansions for Various Models and Their Related Topics」
    • Place of Presentation
      京都大学(京都府)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] Power spikedモデルをもつ高次元データの固有値推定について

    • Author(s)
      矢田和善
    • Organizer
      日本数学会2013年度年会
    • Place of Presentation
      京都大学(京都府)
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] PCA Consistency for High-Dimensional Data under the Power Spiked Model

    • Author(s)
      Yata, K., Aoshima, M.
    • Organizer
      Korea Statistical Society Semi-Annual Meeting
    • Place of Presentation
      Dongguk University (大韓民国)
    • Invited
    • Data Source
      KAKENHI-PROJECT-22300094
  • [Presentation] たった30個の標本で,10000次元のデータを,どこまで精密に解析できるか?

    • Author(s)
      青嶋 誠,矢田和善
    • Organizer
      筑波大学数学談話会
    • Place of Presentation
      筑波大学 (茨城県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] 高次元小標本の幾何学的表現と最大固有値の漸近分布

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本数学会2013年度秋季総合分科会
    • Place of Presentation
      愛媛大学 (愛媛県)
    • Data Source
      KAKENHI-PROJECT-23650142
  • [Presentation] PCA consistency for high-dimensional data under genelized models

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      九州大学 (福岡県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for high-dimensional, non-Gaussian data under power spiked model

    • Author(s)
      矢田和善
    • Organizer
      統計数学セミナー
    • Place of Presentation
      東京大学 (東京都)
    • Data Source
      KAKENHI-PROJECT-23740066
  • [Presentation] Effective PCA for high-dimension, low-sample-size data with geometric representations

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      Second Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Place of Presentation
      つくば国際会議場 (茨城県)
    • Data Source
      KAKENHI-PROJECT-23740066
  • 1.  AOSHIMA Makoto (90246679)
    # of Collaborated Projects: 12 results
    # of Collaborated Products: 359 results
  • 2.  AKAHIRA Masafumi (70017424)
    # of Collaborated Projects: 8 results
    # of Collaborated Products: 0 results
  • 3.  石井 晶 (20801161)
    # of Collaborated Projects: 4 results
    # of Collaborated Products: 51 results
  • 4.  KOIKE Ken-ichi (90260471)
    # of Collaborated Projects: 3 results
    # of Collaborated Products: 0 results
  • 5.  OHYAUCHI Nao (40375374)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 6.  金森 敬文 (60334546)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 7.  蛭川 潤一 (10386617)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 8.  星野 伸明 (00313627)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 9.  小森 理 (60586379)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 10.  松井 秀俊 (90633305)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 11.  植木 優夫 (10515860)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 12.  鈴木 大慈 (60551372)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 13.  SATO-ILIC Mika (60269214)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 14.  高橋 秀人 (80261808)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 15.  宇野 力 (20282155)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 16.  廣瀬 慧 (40609806)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 17.  柳原 宏和 (70342615)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 18.  竹之内 高志 (50403340)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 19.  井元 清哉 (10345027)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 20.  塩濱 敬之 (40361844)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 21.  江頭 健斗 (20979869)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 9 results
  • 22.  荒木 由布子 (80403913)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 23.  川野 秀一 (50611448)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 24.  松田 安昌 (10301590)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 25.  田畑 耕治 (30453814)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 26.  片山 翔太 (50742459)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 27.  中山 優吾 (40884169)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 11 results
  • 28.  今泉 允聡 (90814088)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 29.  植松 良公 (40835279)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 30.  仲北 祥悟 (80855114)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 31.  清 智成
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi